Asymptotically optimal approach to the approximate solution of several problems of covering a graph by nonadjacent cycles


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider the m-Cycle Cover Problem of covering a complete undirected graph by m vertex-nonadjacent cycles of extremal total edge weight. The so-called TSP approach to the construction of an approximation algorithm for this problem with the use of a solution of the traveling salesman problem (TSP) is presented. Modifications of the algorithm for the Euclidean Max m-Cycle Cover Problem with deterministic instances (edge weights) in a multidimensional Euclidean space and the Random Min m-Cycle Cover Problem with random instances UNI(0,1) are analyzed. It is shown that both algorithms have time complexity O(n3) and are asymptotically optimal for the number of covering cycles m = o(n) and \(m \leqslant \frac{{n^{1/3} }}
{{\ln n}}\)
, respectively.

作者简介

E. Gimadi

Sobolev Institute of Mathematics

编辑信件的主要联系方式.
Email: gimadi@math.nsc.ru
俄罗斯联邦, Novosibirsk, 630090

I. Rykov

Sobolev Institute of Mathematics

Email: gimadi@math.nsc.ru
俄罗斯联邦, Novosibirsk, 630090

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016