Elliptic function of level 4


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The article is devoted to the theory of elliptic functions of level n. An elliptic function of level n determines a Hirzebruch genus called an elliptic genus of level n. Elliptic functions of level n are also of interest because they are solutions of the Hirzebruch functional equations. The elliptic function of level 2 is the Jacobi elliptic sine function, which determines the famous Ochanine–Witten genus. It is the exponential of the universal formal group of the form F(u, v) = (u2v2)/(uB(v) − vB(u)), B(0) = 1. The elliptic function of level 3 is the exponential of the universal formal group of the form F(u, v) = (u2A(v) − v2A(u))/(uA(v)2vA(u)2), A(0) = 1, A″(0) = 0. In the present study we show that the elliptic function of level 4 is the exponential of the universal formal group of the form F(u, v) = (u2A(v) − v2A(u))/(uB(v) − vB(u)), where A(0) = B(0) = 1 and for B′(0) = A″(0) = 0, A′(0) = A1, and B″(0) = 2B2 the following relation holds: (2B(u) + 3A1u)2 = 4A(u)3 − (3A12 − 8B2)u2A(u)2. To prove this result, we express the elliptic function of level 4 in terms of the Weierstrass elliptic functions.

Авторлар туралы

E. Bunkova

Steklov Mathematical Institute of Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: bunkova@mi.ras.ru
Ресей, ul. Gubkina 8, Moscow, 119991

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2016