Elliptic function of level 4


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article is devoted to the theory of elliptic functions of level n. An elliptic function of level n determines a Hirzebruch genus called an elliptic genus of level n. Elliptic functions of level n are also of interest because they are solutions of the Hirzebruch functional equations. The elliptic function of level 2 is the Jacobi elliptic sine function, which determines the famous Ochanine–Witten genus. It is the exponential of the universal formal group of the form F(u, v) = (u2v2)/(uB(v) − vB(u)), B(0) = 1. The elliptic function of level 3 is the exponential of the universal formal group of the form F(u, v) = (u2A(v) − v2A(u))/(uA(v)2vA(u)2), A(0) = 1, A″(0) = 0. In the present study we show that the elliptic function of level 4 is the exponential of the universal formal group of the form F(u, v) = (u2A(v) − v2A(u))/(uB(v) − vB(u)), where A(0) = B(0) = 1 and for B′(0) = A″(0) = 0, A′(0) = A1, and B″(0) = 2B2 the following relation holds: (2B(u) + 3A1u)2 = 4A(u)3 − (3A12 − 8B2)u2A(u)2. To prove this result, we express the elliptic function of level 4 in terms of the Weierstrass elliptic functions.

About the authors

E. Yu. Bunkova

Steklov Mathematical Institute of Russian Academy of Sciences

Author for correspondence.
Email: bunkova@mi.ras.ru
Russian Federation, ul. Gubkina 8, Moscow, 119991

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Pleiades Publishing, Ltd.