Polynomial dynamical systems and the Korteweg—de Vries equation


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We explicitly construct polynomial vector fields Lk, k = 0, 1, 2, 3, 4, 6, on the complex linear space C6 with coordinates X = (x2, x3, x4) and Z = (z4, z5, z6). The fields Lk are linearly independent outside their discriminant variety Δ ⊂ C6 and are tangent to this variety. We describe a polynomial Lie algebra of the fields Lk and the structure of the polynomial ring C[X,Z] as a graded module with two generators x2 and z4 over this algebra. The fields L1 and L3 commute. Any polynomial P(X,Z) ∈ C[X,Z] determines a hyperelliptic function P(X,Z)(u1, u3) of genus 2, where u1 and u3 are the coordinates of trajectories of the fields L1 and L3. The function 2x2(u1, u3) is a two-zone solution of the Korteweg–de Vries hierarchy, and z4(u1, u3)/∂u1 = ∂x2(u1, u3)/∂u3.

About the authors

V. M. Buchstaber

Steklov Mathematical Institute of Russian Academy of Sciences

Author for correspondence.
Email: buchstab@mi.ras.ru
Russian Federation, ul. Gubkina 8, Moscow, 119991

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Pleiades Publishing, Ltd.