On an eigenvalue for the Laplace operator in a disk with Dirichlet boundary condition on a small part of the boundary in a critical case


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A boundary-value problem of finding eigenvalues is considered for the negative Laplace operator in a disk with Neumann boundary condition on almost all the circle except for a small arc of vanishing length, where the Dirichlet boundary condition is imposed. A complete asymptotic expansion with respect to a parameter (the length of the small arc) is constructed for an eigenvalue of this problem that converges to a double eigenvalue of the Neumann problem.

About the authors

R. R. Gadyl’shin

Bashkir State Pedagogical University

Author for correspondence.
Email: gadylshin@yandex.ru
Russian Federation, ul. Oktyabrskoi Revolyutsii 3a, Ufa, 450000

S. V. Rep’evskii

Chelyabinsk State University

Email: gadylshin@yandex.ru
Russian Federation, ul. Br. Kashirinykh 129, Chelyabinsk, 454001

E. A. Shishkina

Bashkir State Pedagogical University

Email: gadylshin@yandex.ru
Russian Federation, ul. Oktyabrskoi Revolyutsii 3a, Ufa, 450000

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Pleiades Publishing, Ltd.