On an eigenvalue for the Laplace operator in a disk with Dirichlet boundary condition on a small part of the boundary in a critical case
- Authors: Gadyl’shin R.R.1, Rep’evskii S.V.2, Shishkina E.A.1
-
Affiliations:
- Bashkir State Pedagogical University
- Chelyabinsk State University
- Issue: Vol 292, No Suppl 1 (2016)
- Pages: 76-90
- Section: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/173295
- DOI: https://doi.org/10.1134/S0081543816020073
- ID: 173295
Cite item
Abstract
A boundary-value problem of finding eigenvalues is considered for the negative Laplace operator in a disk with Neumann boundary condition on almost all the circle except for a small arc of vanishing length, where the Dirichlet boundary condition is imposed. A complete asymptotic expansion with respect to a parameter (the length of the small arc) is constructed for an eigenvalue of this problem that converges to a double eigenvalue of the Neumann problem.
About the authors
R. R. Gadyl’shin
Bashkir State Pedagogical University
Author for correspondence.
Email: gadylshin@yandex.ru
Russian Federation, ul. Oktyabrskoi Revolyutsii 3a, Ufa, 450000
S. V. Rep’evskii
Chelyabinsk State University
Email: gadylshin@yandex.ru
Russian Federation, ul. Br. Kashirinykh 129, Chelyabinsk, 454001
E. A. Shishkina
Bashkir State Pedagogical University
Email: gadylshin@yandex.ru
Russian Federation, ul. Oktyabrskoi Revolyutsii 3a, Ufa, 450000
Supplementary files
