On an eigenvalue for the Laplace operator in a disk with Dirichlet boundary condition on a small part of the boundary in a critical case


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A boundary-value problem of finding eigenvalues is considered for the negative Laplace operator in a disk with Neumann boundary condition on almost all the circle except for a small arc of vanishing length, where the Dirichlet boundary condition is imposed. A complete asymptotic expansion with respect to a parameter (the length of the small arc) is constructed for an eigenvalue of this problem that converges to a double eigenvalue of the Neumann problem.

作者简介

R. Gadyl’shin

Bashkir State Pedagogical University

编辑信件的主要联系方式.
Email: gadylshin@yandex.ru
俄罗斯联邦, ul. Oktyabrskoi Revolyutsii 3a, Ufa, 450000

S. Rep’evskii

Chelyabinsk State University

Email: gadylshin@yandex.ru
俄罗斯联邦, ul. Br. Kashirinykh 129, Chelyabinsk, 454001

E. Shishkina

Bashkir State Pedagogical University

Email: gadylshin@yandex.ru
俄罗斯联邦, ul. Oktyabrskoi Revolyutsii 3a, Ufa, 450000

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016