On an eigenvalue for the Laplace operator in a disk with Dirichlet boundary condition on a small part of the boundary in a critical case


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A boundary-value problem of finding eigenvalues is considered for the negative Laplace operator in a disk with Neumann boundary condition on almost all the circle except for a small arc of vanishing length, where the Dirichlet boundary condition is imposed. A complete asymptotic expansion with respect to a parameter (the length of the small arc) is constructed for an eigenvalue of this problem that converges to a double eigenvalue of the Neumann problem.

Sobre autores

R. Gadyl’shin

Bashkir State Pedagogical University

Autor responsável pela correspondência
Email: gadylshin@yandex.ru
Rússia, ul. Oktyabrskoi Revolyutsii 3a, Ufa, 450000

S. Rep’evskii

Chelyabinsk State University

Email: gadylshin@yandex.ru
Rússia, ul. Br. Kashirinykh 129, Chelyabinsk, 454001

E. Shishkina

Bashkir State Pedagogical University

Email: gadylshin@yandex.ru
Rússia, ul. Oktyabrskoi Revolyutsii 3a, Ufa, 450000

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016