DISTANT LANDMARK OBJECTS ARE NOT CRUCIAL FOR LEARNING THE GOAL LOCATION IN A MAZE BY ADULT COMMON TOADS (BUFO BUFO L.)
- Authors: Gromova V.S1, Ogurtsov S.V1
-
Affiliations:
- Lomonosov Moscow State University, Faculty of Biology
- Issue: Vol 104, No 12 (2025)
- Pages: 55–76
- Section: ARTICLES
- URL: https://journals.rcsi.science/0044-5134/article/view/375838
- DOI: https://doi.org/10.7868/S3034545625120068
- ID: 375838
Cite item
Abstract
Amphibians are known to be capable of using both proximal and distant visual landmarks for orientation during the summer period, but their relative importance for amphibians remains almost unstudied. The present research tests the significance of distant landmarks in the case of the Common toad, Bufo bufo. Rectangular mazes consisting of one central and 4 side rooms were used for experiments. Various objects that could be used as orientational cues (proximal landmarks) were placed on the floor of the central room, while distant landmarks were positioned on screens outside the maze (a cardboard figure 155 × 30 cm in size). The experiment consisted of two consecutive trials, each lasting 4 h. During the first trial, the animal learnt the location of one of the four rooms of the rectangular maze (160 × 96 cm) that contained attractive “resources” (container with moving prey, water source and shelter). The first trial of the experiment was followed by a 30 min break. During the break, the “resources” were removed from the maze and all four side rooms were left empty, but the location of the distant landmark was changed 180° relative to the maze (proximal landmarks were left in the same place). According to our hypothesis, if the animal uses a distant landmark to learn the location of the target room, in the second trial it will spend more time and travel a greater distance in the room located diagonally to the “resource” room. However, if the distant landmark is not the primary one used to find the target room, the amphibian would visit the room that earlier contained the “resources” more often like in the first trial. A total of 20 adult common toads were tested individually. In this experimental situation, the toads successfully found the room, where the “resources” were previously located, 30 min following the first trial. Thus, our distant visual landmark was not used by common toads as a primary one to learn the location of the target room, but changing the location of this landmark resulted in increased locomotor activities in the second trial.
Keywords
About the authors
V. S Gromova
Lomonosov Moscow State University, Faculty of BiologyDepartment of Vertebrate Zoology Moscow, Russia
S. V Ogurtsov
Lomonosov Moscow State University, Faculty of Biology
Email: sergei.v.ogurtsov@yandex.ru
Department of Vertebrate Zoology Moscow, Russia
References
- Бастаков В.А., 1987. Оценка жабами дистанций до движущихся объектов и их истинных размеров: нейроэтологические и сравнительные аспекты // Журнал эволюционной биохимии и физиологии. Т. 23. Вып. 1. С. 92–97.
- Кишкинев Д.А., Чернецов Н.С., 2014. Магниторецепторные системы у птиц: обзор современных исследований // Журнал общей биологии. Т. 75. Вып. 2. С. 104–123.
- Кузьмин C.Л., 2012. Земноводные Бывшего СССР. М.: Товарищество научных изданий КМК. 2 е издание. 371 С.
- МакФарленд Д., 1988. Поведение животных: Психобиология, этология и эволюция: Пер. с англ. М.: Мир. С. 215–219.
- Мешкова Н.Н., Федорович Е.Ю., 1996. Ориентировочно-исследовательская деятельность, подражание и игра как психологические механизмы адаптации высших позвоночных к урбанизированной среде. М.: Аргус. 226 с.
- Огурцов С.В., 2004. Запоминание запаха родного водоема как один из механизмов хемосенсорной ориентации бесхвостых амфибий. Дис. … канд. биол. наук. М.: МГУ. 337 с.
- Огурцов С.В., 2008. Использование пространства взрослыми особями серой жабы, Bufo bufo, в летний период // Вопросы герпетологии. Материалы III съезда Герпетологического общества им. А.М. Никольского, Санкт-Петербург: Изд-во СПбГУ. С. 319–327.
- Терентьев П.В., 1950. Лягушка. М.: Советская наука. С. 35–74.
- Хмелевская Н.В., Деулина Т.О., 1972. О роли обоняния в жизни бесхвостых амфибий // Зоологический журнал. Т. 51. Вып. 5. С. 764–767.
- Шмидт-Ниельсен К., 1987. Размеры животных: почему они так важны? М.: Мир. 259 с.
- Able K.P., 1993. Orientation cues used by migratory birds: A review of cue-conflict experiments // Trends in Ecology and Evolution. V. 8. P. 367–371.
- Adler K., 1980. Individuality in the use of orientation cues by green frogs // Animal Behaviour. V. 28. P. 413–425.
- Adler K., 1982. Sensory aspects of amphibian navigation and compass orientation // Vertebrata Hungarica. V. 21. P. 7–18.
- ASAB Ethical Committee/ABS Animal Care Committee, 2023. Guidelines for the ethical treatment of nonhuman animals in behavioural research and teaching // Animal Behaviour. V. 195. P. I–XI: 10.1016/j.anbehav.2022.09.006
- Belzung C., 1999. Measuring rodent exploratory behavior // Techniques in the Behavioral and Neural Sciences. V. 13. P. 738–749.
- Chamizo V.D., Torres M.N., Rodríguez C.A., Mackintosh N.J., 2019. What makes a landmark effective in adolescent and adult rats? Sex and age differences in a navigation task // Learning and Behavior. V. 47. P. 156–165.
- Chapillon P., Roullet P., 1996. Use of proximal and distal cues in place navigation by mice: changes during ontogeny // Developmental Psychobiology. V. 29. № 6. P. 529–545.
- Cimadevilla J.M., Conejo N.M., Miranda R., Arias J.L., 2004. Sex differences in the Morris water maze in young rats: temporal dimensions // Psicothema. V. 16. № 4. P. 611–614.
- Crane A.L., Mathis A., 2011. Landmark learning by the Ozark zigzag salamander Plethodon angusticlavius // Current Zoology. V. 57. P. 485–490.
- Dall’antonia P., Sinsch U., 2001. In search of water: Orientation behaviour of dehydrated natterjack toads, Bufo calamita // Animal Behaviour. V. 61. P. 617–629.
- Daneri M.F., Casanave E., Muzio R.N., 2011. Control of spatial orientation in terrestrial toads (Rhinella arenarum) // Journal of Comparative Psychology. V. 125. P. 296–307.
- Daneri M.F., Casanave E.B., Muzio R.N., 2015. Use of local visual cues for spatial orientation in terrestrial toads (Rhinella arenarum): The role of distance to a goal // Journal of Comparative Psychology. V. 129. P. 247–255.
- Dole J.W., 1965. Spatial relations in natural populations of the Leopard frog, Rana pipiens Schreber, in Nothern Michigan // The American Midland Naturalist. V. 74. № 2. P. 464–478.
- Dole J.W., 1965a. Summer movements of adult Leopard frogs, Rana pipiens Schreber, in Nothern Michigan // Ecology. V. 46. № 3. P. 236–255.
- Etienne A.S., Maurer R., Saucy F., 1988. Limitations in the assessment of path dependent information // Behaviour. V. 106. № 1/2. P. 81–111.
- Ewert J., 1976. The Visual System of the Toad: Behavioral and Physiological Studies on a Pattern Recognition System // Eds. Ewert J-P., The Amphibian Visual System. A Multidisciplinary Approach, Ch. 5. P. 150–211.
- Ferguson D.E., Landreth H.F., 1966. Celestial orientation of fowler’s toad Bufo fowleri // Behaviour. V. 26. № 1–2. P. 105–123.
- Hébert M., Bulla J., Vivien D., Agin V., 2017. Are Distal and Proximal Visual Cues Equally Important during Spatial Learning in Mice? A Pilot Study of Overshadowing in the Spatial Domain // Frontiers in Behavioral Neuroscience. V. 11. № 109. P. 1–8.
- Hepper P.G., Waldman B., 1992. Embryonic Olfactory Learning in Frogs // The Quarterly Journal of Experimental Psychology Section B. V. 44. P. 179–197.
- Hollup S.A., Molden S., Donnett J.G., Moser M.B., Moser E.I., 2001. Accumulation of hippocampal place fields at the goal location in an annular watermaze task // Journal of Neuroscience. V. 21. P. 1635–1644.
- Khatiwada S., Burmeister S.S., 2022. Quantity discrimination in a spontaneous task in a poison frog // Animal Cognition. V. 25. P. 27–32.
- Kundey S.M., Millar R., McPherson J., Gonzalez M., Fitz A., Allen C.A., 2016. Tiger salamanders’ (Ambystoma tigrinum) response learning and usage of visual cues // Animal Cognition. V. 19. P. 533–541.
- Lavenex P., Schenk F., 1995. Influence of local environmental olfactory cues on place learning in rats // Physiology and Behavior. V. 58. P. 1059–1066.
- Lázár G., Brändle K., 1994. Hydrotactic orientation of frogs in the laboratory // Amphibia-Reptilia. V. 15. № 3. P. 285–295.
- Lee J.S.F., Waldman B., 2002. Communication by fecal chemosignals in an archaic frog, Leiopelma hamiltoni // Copeia. № 3. P. 679–686.
- Lettvin J.Y., Maturana H.R., McCulloch W.S., Pitts W.H., 1959. What the Frog’s Eye Tells the Brain // Proceedings of the IRE. P. 1940–1951.
- Liu Y., Burmeister S.S., 2017. Sex differences during place learning in the túngara frog // Animal Behaviour. V. 128. P. 61–67.
- Liu Y., Day L.B., Summers K., Burmeister S.S., 2016. Learning to learn: Advanced behavioural flexibility in a poison frog // Animal Behaviour. V. 111. P. 167–172.
- Liu Y., Day L.B., Summers K., Burmeister S.S., 2019. A cognitive map in a poison frog // Journal of Experimental Biology. V. 222. 8 p.
- Mesa V., Osorio A., Ballesta S., Marimon J.M., Chamizo V.D., 2017. Geometric vs. non-geometric information. Explaining male rats’ selective preferences in a navigation task // Learning and Motivation. V. 60. P. 23–33.
- Miller A.J., Page R.A., Bernal X.E., 2018. Exploratory behavior of a native anuran species with high invasive potential // Animal Cognition. V. 21. P. 55–65.
- Ogurtsov S.V., Antipov V.A., Permyakov M.G., 2018. Sex differences in exploratory behaviour of the common toad, Bufo bufo // Ethology Ecology & Evolution. V. 30. № 6. P. 543–568.
- O’Keefe J., Conway D.H., 1978. Hippocampal place units in the freely moving rat: Why they fire where they fire // Experimental Brain Research. V. 31. P. 573–590.
- Pakhomov A., Chernetsov N., 2020. A hierarchy of compass systems in migratory birds // Biological Communications. V. 65. № 3. P. 262–276.
- Pašukonis A., Trenkwalder K., Ringler M., Ringler E., Mangione R., Steininger J., Warrington I., Hӧdl W., 2016. The significance of spatial memory for water finding in a tadpole-transporting frog // Animal Behaviour. V. 116. P. 89–98.
- Phillips J.B., 1986. Magnetic compass orientation in the Eastern red-spotted newt (Notophthalmus viridescens) // Journal of Comparative Physiology A. V. 158. P. 103–109.
- Putnam R.W., Hillman S.S., 1977. Activity responses of anurans to dehydration // Copeia. № 4. P. 746–749.
- Recktenwald E.W., 2014. Visual Recognition of the Stationary Environment in Leopard Frogs / PhD Dissertation. Temple University. 117 p.
- Rodríguez F., Quintero B., Amores L., Madrid D., Salas-Peña C., Salas C., 2021. Spatial cognition in teleost fish: Strategies and mechanisms // MDPI. Animals. 25 p.
- Schmajuk N.A., Segura E.T., 1982. Behavioral regulation of water balance in the toad Bufo arenarum // Herpetologica. V. 38. P. 296–301.
- Sinsch U., 1987. Orientation behaviour of toads (Bufo bufo) displaced from the breeding site // Journal of Comparative Physiology A: Neuroethology, Sensory, Neural and Behavioral Physiology. № 161. P. 715–727.
- Sinsch U., 1987a. Migratory behaviour of the toad Bufo bufo within its home range and after displacement // Proceedings of the 4th Ordinary General Meeting of the Societas Europaea Herpetologica, Nijmegen. P. 361–364.
- Sinsch U., 1992. Amphibians // Animal Homing, Papi F., Chapman & Hall. P. 213–233.
- Sotelo M.I., Alcalá J.A., Bingman V.P., Muzio R.N., 2019. On the transfer of spatial learning between geometrically different shaped environments in the terrestrial toad, Rhinella arenarum // Animal Cognition. V. 23. № 1. P. 55–70.
- Sotelo M.I., Bingman V.P., Muzio R.N., 2015. Goal orientation by geometric and feature cues: spatial learning in the terrestrial toad Rhinella arenarum // Animal Cognition. V. 18. № 1. P. 315–323.
- Sotelo M.I., Bingman V.P., Muzio R.N., 2017. Slope-based and geometric encoding of a goal location by the terrestrial toad (Rhinella arenarum) // Journal of Comparative Psychology. V. 131. № 4. P. 362–369.
- Sotelo M.I., Daneri M.F., Bingman V.P., Muzio R.N., 2017a. Telencephalic Neuronal Activation Associated with Spatial Memory in the Terrestrial Toad Rhinella arenarum: Participation of the Medial Pallium during Navigation by Geometry // Brain, Behavior and Evolution. V. 88. № 3–4. P. 149–160.
- Sotelo M.I., Daneri M.F., Bingman V.P., Muzio R.N., 2024. Amphibian spatial cognition, medial pallium and other supporting telencephalic structures // Neuroscience and Biobehavioral Reviews. V. 163. August 2024. 105739.
- Spetch M.L., 1995. Overshadowing in Landmark Learning: Touch-Screen Studies with Pigeons and Humans // Journal of Experimental Psychology: Animal Behavior Processes. V. 21. P. 166–181.
- Tang A.C., Nakazawa M., Reeb B.C., 2003. Neonatal novelty exposure affects sex difference in open field disinhibition // NeuroReport. V. 14. P. 1553–1556.
- Vanni L., Baldaccini N.E., Giunchi D., 2017. Cue-conflict experiments between magnetic and visual cues in dunlin Calidris alpina and curlew sandpiper Calidris ferruginea // Behavioral Ecology and Sociobiology. V. 71. № 61.
- Wells K.D., 2007. The ecology and behavior of amphibians. Chicago and London:в The University of Chicago Press. 1148 p.
- Whishaw I.Q., Gharbawie O.A., Clark B.J., Lehmann H., 2006. The exploratory behavior of rats in an open environment optimizes security // Behav Brain Res. V. 171. P. 230–239.
- Williams J.T., 1967. A test for dominance of cues during maze learning by toads // Psychonomic Science. V. 9. P. 259–260.
Supplementary files


