THE POPULATION STRUCTURE OF THE SYMBIOTIC CRAB, TRAPEZIA SEPTATA (DECAPODA, TRAPEZIIDAE) AT THE EARLY STAGES OF CORAL COLONY DEVELOPMENT

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Symbiotic invertebrates play crucial roles in coral reef ecosystems due to their extremely high abundance and biomass, and by maintaining coral fitness and protecting them from predation. Among these invertebrates, symbiotic crabs of the family Trapeziidae are especially important for branching corals of the family Pocilloporidae. In this research, we studied the spatial arrangement and parameters of the populations of the symbiotic crab, Trapezia septata at the early stage of Pocillopora verrucosa colony formation. The study was conducted based on symbionts sampled from small coral colonies exposed for three months at a coral nursery in the Nha Trang Bay, Vietnam. As much as 59.5% of the study colonies are shown to be inhabited by the T. septata crab. The percentage of inhabited colonies grows proportionately to their volume. The male to female ratio is 1.4, being skewed to males. The number of males and females is increased with the volume of inhabited colonies, as is the average size of individuals. Individual colonies are commonly inhabited by a single crab or heterosexual pairs. Sexual dimorphism was found, females being larger than males. A positive relationship between the sizes of males and females in pairs was revealed, as in 73% pairs females were larger than males. The size of the clutch correlated positively to the size of the female. We hypothesize that the predominance of males in the population, as well as the individuals located among the hosts one by one, is the result of intersexual competition

About the authors

V. A. Merkin

Lomonosov Moscow State University

Author for correspondence.
Email: vmx7@mail.ru
Russia, 119991, Moscow

T. A. Britayev

Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences

Author for correspondence.
Email: britayev@yandex.ru
Russia, 124057, Moscow

References

  1. Бритаев Т.А., Михеев В.Н., 2013. Агрегированное размещение склерактиниевых кораллов влияет на структуру ассоциированных с ними симбиотических сообществ // Доклады Академии наук. Т. 448. № 5. С. 614–617.
  2. Пастернак А.Ф., Михеев В.Н., Валтонен Э.Т., 2004. Адаптивное значение размерно-полового диморфизма у Argulus coregoni (Crustacea: Branchiura), эктопаразита рыб // Доклады. Академии наук, Т. 398. № 3. С. 1–4.
  3. Abele L.G., Patton W.K., 1976. The size of coral heads and community biology of associated decapod crustaceans // Journal of Biogeography. V. 3. P. 35–47.
  4. Austin A.D., Austin S.A., Sale P.E., 1980. Community structure of the fauna associated with the coral Pocillopora damicornis (L.) on the Great Barrier Reef // Mar. Freshwater Res. V. 31. P. 163–174.
  5. Baeza J.A., Stotz W., Thiel M., 2001. Life history of Allopetrolisthes spinifrons (H.M. Edwards, 1837), a crab associate of the sea anemone Phymactis clematis // J. Mar. Biol. Ass. U.K. V. 81. P. 69–76.
  6. Britayev T.A., Petrochenko R.A., Burmistrova Yu.A., Nguyen H.T., Lishchenko F.V., 2023. Density and bleaching of corals and their relationship to the coral symbiotic community // Diversity. V. 15. 456. https://doi.org/10.3390/d15030456
  7. Britayev T.A., Spiridonov V.A., Deart Y.V., El-Sherbiny M., 2017. Biodiversity of the community associated with Pocillopora verrucosa (Scleractinia: Pocilloporidae) in the Red Sea // Marine Biodiversity, Moscow. V. 47. P. 1093–1109.
  8. Castro P., 1978. Movements between coral colonies in T. ferruginea (Crustacea: Brachyura), an obligate symbiont of scleractinian corals // Marine Biology. V. 46. P. 237–245.
  9. Castro P., 2015. Symbiotic Brachyura // Treatise on Zoology – Anatomy, Taxonomy, Biology. The Crustacea, V. 9, Part C. Leiden, The Netherlands: Brill. P. 543–581. https://doi.org/10.1163/9789004190832_012
  10. Chang K., Chen Y., Chen C., 1987. Xanthid crabs in the corals, Pocillopora damicornis and P. verrucosa of Southern Taiwan. Bulletin of Marine Science. V. 41. № 2. P. 214–220.
  11. Devantier L., Reichelt R., Bradbury R., 1986. Does Spirobranchus giganteus protect host Porites from predation by Acanthaster planci: Predator pressure as a mechanism of coevolution? // Marine Ecology Progress Series. V. 32. P. 307–310.
  12. Enochs I.C., 2012. Motile cryptofauna associated with live and dead coral substrates: implications for coral mortality and framework erosion // Marine Biology. V. 159. P. 709–722.
  13. Galil B., 1987. The adaptive functional structure of mucus-gathering setae in trapezid crabs symbiotic with corals // Symbiosis. V. 4. P. 75–86.
  14. Garth J.S., 1973. The brachyuran crabs of Easter Island // Proc. California Acad. Sci. V. 4. № 39. P. 311–336.
  15. Glynn P., 1980. Defense by symbiotic Crustacea of host corals elicited by chemical cues from predator // Oecologia. V. 47. P. 287–290.
  16. Gotelli N.J., Gilchrist S.L., Abele L.G., 1985. Population biology of Trapezia spp. and other coral-associated decapods // Marine Ecology Progress Series. V. 21. P. 89–98.
  17. Hiatt R.W., Strasburg D.W., 1960. Ecological relationships of the fish fauna on coral reefs of the Marshall Islands // Ecol. Monogr. V. 30. P. 65127.
  18. Huber M.E., 1987. Aggressive behaviour of Trapezia intermedia Miers and T. digitalis Latreille (Brachiura: Xantidae) // Journal of Crustacean Biology. V. 7. P. 238–248.
  19. Huber M.E., Coles S.L., 1986. Resource utilization and competition among the five Hawaiian species of Trapezia (Crustacea, Brachyura) // Marine Ecology Progress Series. V. 30. P. 21–31.
  20. Johnson P.T. J., 2003. Biased Sex Ratios in Fiddler Crabs (Brachyura, Ocypodidae): A Review and Evaluation of the Influence of Sampling Method, Size Class, and Sex-Specific Mortality // Crustaceana. V. 76. P. 559–580.
  21. Knudsen J.W., 1967. Trapezia and Tetralia (Decapoda, Brachyura, Xanthidae) as obligate ectoparasites of the pocilloporid and acroporid corals // Pacific Science. V. 21. P. 50–57.
  22. Liberman T., Genin A., Loya Y., 1995. Effects on growth and reproduction of the coral Stylophora pistillata by the mutualistic damselfish Dascyllus marginatus // Marine Biology. № 121 (4). P. 741–746.
  23. Martin D.S., Britayev T.A., 1998. Symbiotic polychaetes: review of known species // Oceanogr. Mar. Biol. Ann. Rev. V. 36. P. 217–340.
  24. McKeon C.S., Moore J.M., 2014. Species and size diversity in protective services offered by coral guard-crabs // Peer J. V. 2. e574.https://doi.org/10.7717/peerj.574
  25. Mekhova E.S., Dgebuadze P.Y., Mikheev V.N., Britayev T.A., 2015. Colonization of depopulated crinoids by symbionts: who comes from the bottom and who from the water column? // Journal of the Marine Biological Association of the United Kingdom. V. 95. P. 1607–1612.
  26. Mokady O., Loya Y., Laza B., 1998. Ammonium contribution from boring bivalves to their coral host – a mutulalistic symbiosis? // Marine Ecology Progress Series. V. 169. P. 295–301.
  27. Montano S., 2020. The extraordinary importance of coral associated fauna // Diversity. V. 12. 357. https://doi.org/10.3390/d12090357
  28. Patton W.K., 1974. Community structure among the animals inhabiting the coral Pocillopora damicornis at Heron Island Australia // Symbiosis in the sea. Vernberg W.K., Vernberg W.B. (eds). USA: Univ. South Carolina Press. P. 219–243.
  29. Pisapia C., Stella J., Silbiger N.J., Carpenter R., 2020. Epifaunal invertebrate assemblages associated with branching Pocilloporids in Moorea, French Polynesia // PeerJ. V. 8. e9364. https://doi.org/10.7717/peerj.9364
  30. Pratchett M.S., 2001. Influence of coral symbionts on feeding prefer-ences of crown-of-thorns starfish Acanthaster planci in the western Pacific // Marine Ecology Progress Series. V. 214. P. 111–119.
  31. Preston E.M., 1973. A computer simulation of competition among five sympatric congeneric species of xanthid crabs // Ecology. V. 54. P. 469–483.
  32. Rouzé H., Lecellier G., Mills S.C., Planes S., Berteaux-Lecellier V., Stewart H., 2014. Juvenile T. spp. crabs can increase juvenile host coral survival by protection from predation // Marine Ecology Progress. V. 515. P. 151–159.
  33. Shmuel Y., Ziv Y., Rinkevich B., 2022. Coral-inhabiting T. crabs forage on demersal plankton // Front. Mar. Sci. V. 9: 964725. https://doi.org/10.3389/fmars.2022.964725
  34. Stachowicz J.J., Hay M.E., 1999. Reducing predation through chemically mediated camouflage: indirect effects of plant defenses on herbivores // Ecology. V. 80. P. 495–509.
  35. Stella J., Munday P., Walker S., Pratchett M., Jones G., 2014. From cooperation to combat: Adverse effect of thermal stress in a symbiotic coral-crustacean community // Oecologia. V. 174. P. 1187–1195.
  36. Stella J.S., Pratchett M.S., Hutchings P.A., Jones G.P., 2011. Coral associated invertebrates: diversity, ecological importance and vulnerability of disturbance // Oceanography and Marine Biology. V. 49. P. 43–104.
  37. Stewart H.L., Holbrook S.J., Schmitt R.J., Brooks A., 2006. Symbiotic crabs maintain coral health by clearing sediments // Coral Reefs. V. 25. P. 609–615.
  38. Stier A.C., Gil M.A., McKeon C.S., Lemer S., Leray M., Mills S., Ossenberg C., 2012. Housekeeping Mutualisms: Do More Symbionts Facilitate Host Performance? // PLoS ONE. V. 7. e32079.
  39. Thiel M., Zander A., Baeza J.A., 2003. Movements of the symbiotic crab Liopetrolisthes mitra between its host sea urchin Tetrapygus niger // Bulletin of Marine Science. V. 72. P. 89–101.
  40. Tkachenko K.S., Soong K., Deart Y.V., Britayev T.A., 2022. Coral symbiotic communities from different environments of an isolated atoll: reef lagoon versus forereef // Invertebrate Zoology. V. 19. P. 78–90.
  41. Türkay M., Cuvelier D., Vanden Berghe E., Davie P., Ahyong S., 2023. Trapeziidae Miers, 1886. WoRMS. Accessed at: https://www.marinespecies.org/aphia.php?p=taxdetails&id=106768 on 2023-03-05

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (73KB)
4.

Download (52KB)
5.

Download (63KB)
6.

Download (54KB)
7.

Download (76KB)
8.

Download (64KB)
9.

Download (73KB)

Copyright (c) 2023 В.А. Меркин, Т.А. Бритаев

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies