The Activity of the Left Inferior Frontal Gyrus and the Error Detection Brain Mechanism During Deception Under Conditions of Different Monetary Benefit
- Authors: Korotkov A.D.1, Zheltyakova M.A.1, Masharipov R.S.1, Didour М.D.1, Cherednichenko D.V.1, Kireev М.V.1,2
-
Affiliations:
- N.P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences
- Saint-Petersburg State University
- Issue: Vol 74, No 2 (2024)
- Pages: 244-256
- Section: ФИЗИОЛОГИЯ ВЫСШЕЙ НЕРВНОЙ (КОГНИТИВНОЙ) ДЕЯТЕЛЬНОСТИ ЧЕЛОВЕКА
- URL: https://journals.rcsi.science/0044-4677/article/view/262133
- DOI: https://doi.org/10.31857/S0044467724020081
- ID: 262133
Cite item
Abstract
This research is aimed at investigating the characteristics of activity of brain areas that underlie action execution and are modulated by the error detection mechanism under conditions of various potential monetary benefits of manipulative truthful and false actions. It is shown that the implementation of potentially less profitable deceptive actions is associated with a relatively higher level of functional activity of the inferior frontal gyrus, a structure that receives information from structures associated with the error detection mechanism. This effect was revealed in experimental conditions with less reinforced deceptive actions, both in comparison with relatively more rewarded deception, and with manipulative truthful actions, regardless of their reward. Moreover, the increase in the profit of deceptive actions is accompanied by the disappearance of a statistically significant difference in the activity of the ventrolateral prefrontal cortex, which has been observed in the comparison of equally low profitable truthful and false actions. These results indicate a possible mechanism of expected monetary benefit influence on the manipulative decision to lie, according to which, the prefrontal structures underlying control of behavior show less susceptibility to the involvement of the error detection mechanism in maintaining deceptive actions.
Keywords
Full Text

About the authors
A. D. Korotkov
N.P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences
Author for correspondence.
Email: korotkov@ihb.spb.ru
Russian Federation, St. Petersburg
M. A. Zheltyakova
N.P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences
Email: korotkov@ihb.spb.ru
Russian Federation, St. Petersburg
R. S. Masharipov
N.P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences
Email: korotkov@ihb.spb.ru
Russian Federation, St. Petersburg
М. D. Didour
N.P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences
Email: korotkov@ihb.spb.ru
Russian Federation, St. Petersburg
D. V. Cherednichenko
N.P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences
Email: korotkov@ihb.spb.ru
Russian Federation, St. Petersburg
М. V. Kireev
N.P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences; Saint-Petersburg State University
Email: korotkov@ihb.spb.ru
Russian Federation, St. Petersburg; St. Petersburg
References
- Киреев М.В., Старченко М.Г., Пахомов С.В., Медведев С.В. Этапы мозгового обеспечения заведомо ложных ответов. Физиология человека. 2007. 33: 5.
- Киреев М.В., Коротков А.Д., Поляков Ю.И., Аничков А.Д., Медведев С.В. Мозговой механизм детекции ошибок – ПЭТ исследование. Рос. физиол. журн. им. И.М. Сеченова. 2011. 97: 1060.
- Киреев М.В., Медведева Н.С., Коротков А.Д., Медведев С.В. Особенности функционального взаимодействия хвостатого ядра и нижней лобной извилины в процессе обеспечения сознательных ложных действий. Физиология человека. 2015. 41: 29–34.
- Киреев М.В., Коротков А.Д., Котомин И., Медведев С.В. Особенности системной организации мозговых систем, вовлекаемые в обеспечение подготовки действий. Рос. физиол. журн. им. И.М. Сеченова. 2018. 104: 300–311.
- Abe N., Suzuki M., Tsukiura T., Mori E., Yamaguchi K., Itoh M., Fujii T. Dissociable roles of prefrontal and anterior cingulate cortices in deception. Cereb. Cortex 2006. 16(2): 192–199. https://doi.org/10.1093/cercor/bhi097
- Badre D., Poldrack R.A., Juliana Paré-Blagoev E., Insler R.Z., Wagner A.D. Dissociable Controlled Retrieval and Generalized Selection Mechanisms in Ventrolateral Prefrontal Cortex. Neuron 2005. 47: 907–918. https://doi.org/10.1016/j.neuron.2005.07.023
- Bechtereva N.P., Gretchin V.B. Physiological Foundations of Mental Activity. Int. Rev. Neurobiol. 1969. 11: 329– 352. https://doi.org/10.1016/S0074-7742(08)60392-X
- Bechtereva N.P., Medvedev S. V., Abdullaev Y.G. Neural correlate of mental error detection in the human brain cortex. Biomed. Sci. 1991. 2 (3): 301–305.
- Bechtereva N.P., Shemyakina N.V., Starchenko M.G., Danko S.G., Medvedev S.V. Error detection mechanisms of the brain: Background and prospects. Int. J. Psychophysiol. 2005. 58 (2–3): 227–234. https://doi.org/10.1016/j.ijpsycho.2005.06.005
- Berns G.S., Bell E., Capra C.M., Prietula M.J., Moore S., Anderson B. et al. The price of your soul: neural evidence for the non-utilitarian representation of sacred values. Philos. Trans. R. Soc. B Biol. Sci. 2012. 367 (1589): 754–762. https://doi.org/10.1098/RSTB.2011.0262
- Bhanji J.P., Beer J.S., Bunge S.A. Taking a gamble or playing by the rules: Dissociable prefrontal systems implicated in probabilistic versus deterministic rule-based decisions. Neuroimage 2010. 49 (2): 1810–1819. https://doi.org/10.1016/J.NEUROIMAGE.2009.09.030
- Botvinick M.M., Carter C.S., Braver T.S., Barch D.M., Cohen J.D. Conflict monitoring and cognitive control. Psychol. Rev. 2001. 108 (3): 624–652. https://doi.org/10.1037/0033-295X.108.3.624
- Bunge S.A. How we use rules to select actions: A review of evidence from cognitive neuroscience. Cogn. Affect. Behav. Neurosci. 2004. 4 (4): 564–579. https://doi.org/10.3758/CABN.4.4.564
- Cannito L., Palumbo R., Sacco P.L. Measure for measure: Effects of money exposure, reward size and loss aversion on cheating. Curr. Res. Behav. Sci. 2023. 4: 100110. https://doi.org/10.1016/J.CRBEHA.2023.100110
- Carlson R.W., Crockett M.J. The lateral prefrontal cortex and moral goal pursuit. Curr. Opin. Psychol. 2018. 24: 77–82. https://doi.org/10.1016/J.COPSYC.2018.09.007
- Christ S.E., Van Essen D.C., Watson J.M., Brubaker L.E., McDermott K.B. The Contributions of Prefrontal Cortex and Executive Control to Deception: Evidence from Activation Likelihood Estimate Meta-analyses. Cereb. Cortex 2009. 19 (7): 1557–1566. https://doi.org/10.1093/cercor/bhn189
- Cieslik E.C., Ullsperger M., Gell M., Eickhoff S.B., Langner R. Success versus failure in cognitive control: meta-analytic evidence from neuroimaging studies on error processing. bioRxiv. 2023. https://doi.org/10.1101/2023.05.10.540136
- Deouell L.Y. The frontal generator of the mismatch negativity revisited. J. Psychophysiol. 2007. 21 (3–4): 188–203. https://doi.org/10.1027/0269-8803.21.34.188
- Dienes Z. Using Bayes to get the most out of non-significant results. Front. Psychol. 2014. 5: 85883. https://doi.org/10.3389/FPSYG.2014.00781
- Dixon M.L., Christoff K. The lateral prefrontal cortex and complex value-based learning and decision making. Neurosci. Biobehav. Rev. 2014. 45: 9–18. https://doi.org/10.1016/J.NEUBIOREV.2014.04.011
- Dogan A., Morishima Y., Heise F., Tanner C., Gibson R., Wagner A.F., Tobler P.N. Prefrontal connections express individual differences in intrinsic resistance to trading off honesty values against economic benefits. Sci. Reports 2016. 6 (1): 1–12. https://doi.org/10.1038/srep33263
- Fitzgerald K., Todd J. Making Sense of Mismatch Negativity. Front. Psychiatry 2020. 11: 468. https://doi.org/10.3389/FPSYT.2020.00468
- Fu Z., Beam D., Chung J.M., Reed C.M., Mamelak A.N., Adolphs R., Rutishauser U. The geometry of domain-general performance monitoring in the human medial frontal cortex. Science 2022. 376 (6593): eabm9922. https://doi.org/10.1126/SCIENCE.ABM9922
- Gino F., Pierce L. The abundance effect: Unethical behavior in the presence of wealth. Organ. Behav. Hum. Decis. Process. 2009. 109 (2): 142–155. https://doi.org/10.1016/J.OBHDP.2009.03.003
- Hannah R., Aron A.R. Towards real-world generalizability of a circuit for action-stopping. Nat. Rev. Neurosci. 2021. 22 (9): 538–552. https://doi.org/10.1038/s41583-021-00485-1
- Ito A., Abe N., Fujii T., Ueno A., Koseki Y., Hashimoto R. et al. The role of the dorsolateral prefrontal cortex in deception when remembering neutral and emotional events. Neurosci. Res. 2011. 69 (2): 121–128. https://doi.org/10.1016/j.neures.2010.11.001
- Jeffreys H. The theory of probability. 3rd. Ed. Oxford, Engl. Oxford Univ. Press 1961. 470.
- Karim A.A., Schneider M., Lotze M., Veit R., Sauseng P., Braun C., Birbaumer N. The truth about lying: Inhibition of the anterior prefrontal cortex improves deceptive behavior. Cereb. Cortex 2010. 20 (1): 205–213. https://doi.org/10.1093/cercor/bhp090
- Kireev M., Korotkov A., Medvedeva N., Medvedev S. Possible role of an error detection mechanism in brain processing of deception: PET-fMRI study. Int. J. Psychophysiol. 2013. 90 (3): 291–299. https://doi.org/10.1016/j.ijpsycho.2013.09.005
- Kouchaki M., Smith-Crowe K., Brief A.P., Sousa C. Seeing green: Mere exposure to money triggers a business decision frame and unethical outcomes. Organ. Behav. Hum. Decis. Process. 2013. 121 (1): 53–61. https://doi.org/10.1016/J.OBHDP.2012.12.002
- Lee T.M.C., Liu H.L., Tan L.H., Chan C.C.H., Mahankali S., Feng C.M. et al. Lie detection by functional magnetic resonance imaging. Hum. Brain Mapp. 2002. 15 (3): 157–164. https://doi.org/10.1002/HBM.10020
- MacDonald A.W., Cohen J.D., Andrew Stenger V., Carter C.S. Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 2000. 288 (5472): 1835–1838. https://doi.org/10.1126/SCIENCE.288.5472.1835
- Masina F., Tarantino V., Vallesi A., Mapelli D. Repetitive TMS over the left dorsolateral prefrontal cortex modulates the error positivity: An ERP study. Neuropsychologia 2019. 133: 107153. https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2019.107153
- McClure S.M., Laibson D.I., Loewenstein G., Cohen J.D. Separate neural systems value immediate and delayed mone tary rewards. Science. 2004. 306 (5695): 503–507. https://doi.org/10.1126/science.1100907
- Miller E.K., Cohen J.D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 2001. 24: 167–202. https://doi.org/10.1146/ANNUREV.NEURO.24.1.167
- Morein-Zamir S., Robbins T.W. Fronto-striatal circuits in response-inhibition: Relevance to addiction. Brain Res. 2015. 1628: 117–129. https://doi.org/10.1016/J.BRAINRES.2014.09.012
- Nuñez J.M., Casey B.J., Egner T., Hare T., Hirsch J. Intentional false responding shares neural substrates with response conflict and cognitive control. Neuroimage 2005. 25 (1): 267–277. https://doi.org/10.1016/j.neuroimage.2004.10.041
- Oldfield R.C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 1971. 9 (1): 97–113. https://doi.org/10.1016/0028-3932(71)90067-4
- Paavilainen P. The mismatch-negativity (MMN) component of the auditory event-related potential to violations of abstract regularities: a review. Int. J. Psychophysiol. 2013. 88 (2): 109–123. https://doi.org/10.1016/J.IJPSYCHO.2013.03.015
- Parro C., Dixon M.L., Christoff K. The neural basis of motivational influences on cognitive control. Hum. Brain Mapp. 2018. 39 (12): 5097. https://doi.org/10.1002/HBM.24348
- Priori A., Mameli F., Cogiamanian F., Marceglia S., Tiriticco M., Mrakic-Sposta S. et al. Lie-specific involvement of dorsolateral prefrontal cortex in deception. cereb. Cortex 2008. 18 (2): 451–455. https://doi.org/10.1093/CERCOR/BHM088
- Sawilowsky S.S. New effect size rules of thumb. J. Mod. Appl. Stat. Methods 2009. 8 (2): 26. https://doi.org/10.22237/jmasm/1257035100
- Schönwiesner M., Novitski N., Pakarinen S., Carlson S., Tervaniemi M., Näätänen R. Heschl’s gyrus, posterior superior temporal gyrus, and mid-ventrolateral prefrontal cortex have different roles in the detection of acoustic changes. J. Neurophysiol. 2007. 97 (3): 2075–2082. https://doi.org/10.1152/JN.01083.2006
- Shalvi S., Eldar O., Bereby-Meyer Y. Honesty requires time (and lack of justifications). Psychol. Sci. 2012. 23 (10): 1264–1270. https://doi.org/ 10.1177/0956797612443835
- Sharma E., Mazar N., Alter A.L., Ariely D. Financial deprivation selectively shifts moral standards and compromises moral decisions. Organ. Behav. Hum. Decis. Process. 2014. 123 (2): 90–100. https://doi.org/10.1016/J.OBHDP.2013.09.001
- Souza M.J., Donohue S.E., Bunge S.A. Controlled retrieval and selection of action-relevant knowledge mediated by partially overlapping regions in left ventrolateral prefrontal cortex. Neuroimage 2009. 46 (1): 299–307. https://doi.org/10.1016/J.NEUROIMAGE.2009.01.046
- Spence S.A., Hunter M.D., Farrow T.F.D., Green R.D., Leung D.H., Hughes C.J., Ganesan V. A cognitive neurobiological account of deception: Evidence from functional neuroimaging. Philos. Trans. R. Soc. B Biol. Sci. 2004. https://doi.org/10.1098/rstb.2004.1555
- Sun P., Ling X., Zheng L., Chen J., Li L., Liu Z., Cheng X., Guo X. Modulation of financial deprivation on deception and its neural correlates. Exp. Brain Res. 2017. 235 (11): 3271–3277. https://doi.org/10.1007/S00221-017-5052-Y
- Winkler I., Czigler I. Mismatch negativity: deviance detection or the maintenance of the “standard.” Neuroreport 1998. 9 (17): 3809–3813. https://doi.org/10.1097/00001756-199812010-00008
- Wu J., Huang J., Li J., Chen X., Xiao Y. The role of conflict processing mechanism in deception responses. Sci. Rep. 2022. 12 (1): 18300. https://doi.org/10.1038/S41598-022-21569-7
- Yeung N., Botvinick M.M., Cohen J.D. The neural basis of error detection: Conflict monitoring and the error-related negativity. Psychol. Rev. 2004. 111 (4): 931–959. https://doi.org/10.1037/0033-295X.111.4.931
- Yin L., Weber B. I lie, why don’t you: Neural mechanisms of individual differences in self-serving lying. Hum. Brain Mapp. 2019. 40 (4): 1101–1113. https://doi.org/10.1002/hbm.24432
- Zhou Y., Wang Y., Rao L.L., Yang L.Q., Li S. Money talks: Neural substrate of modulation of fairness by monetary incentives. Front. Behav. Neurosci. 2014. 8 (MAY): 80319. https://doi.org/10.3389/FNBEH.2014.00150/ABSTRACT
- Zhu L., Jenkins A.C., Set E., Scabini D., Knight R.T., Chiu P.H. et al. Damage to dorsolateral prefrontal cortex affects tradeoffs between honesty and self-interest. Nat. Neurosci. 2014 1710 2014. 17 (10): 1319–1321. https://doi.org/10.1038/nn.3798
Supplementary files
