Evaluation of sensomotor development, behavioral reactions and cognitive functions of the second generation of rats with hyperhomocysteinemia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The adverse maternal exposure during pregnancy leads to developmental disorders in the offspring that can be passed on to later generations. Epigenetic regulation of DNA transcription may mediate inherited metabolic diseases. An increase in homocysteine concentration in the blood is associated with epigenetic modifications of the genome, which can alter the fetal brain’s development program and cause cognitive impairment. The aim of our work was to identify changes in sensomotor development, behavioral reactions and cognitive functions of offspring of second generation rats (HcyF2) of hyperhomocysteinemia. Our results indicate that unconditioned reflexes and physical parameters are delayed in HcyF2 rats. In “open field”, HcyF2 rats showed higher levels of anxiety and decreased exploratory and motor activity, while coordination of movements studied in “rotarod” test was not impaired. Decreased limb muscle strength was shown in the “grip strength” test. Additionally, HcyF2 rats demonstrated an impaired learning and longterm memory in the Morris water maze. Biochemical analysis revealed an imbalance in the antioxidant systems, which was attributed to decreased activity of glutathione peroxidases and H2S synthesis enzymes. It was suggested that elevated homocysteine levels during pregnancy may result in epigenetic modifications of the genome, which can impact the metabolism of offspring and be inherited by future generations.

Full Text

Restricted Access

About the authors

O. V. Yakovleva

IFM&B, Kazan (Volga Region) Federal University

Author for correspondence.
Email: a-olay@yandex.ru

Department of Human and Animal Physiology

Russian Federation, Kazan

V. V. Skripnikova

IFM&B, Kazan (Volga Region) Federal University

Email: a-olay@yandex.ru

Department of Human and Animal Physiology

Russian Federation, Kazan

A. V. Yakovlev

IFM&B, Kazan (Volga Region) Federal University

Email: a-olay@yandex.ru

Department of Human and Animal Physiology

Russian Federation, Kazan

G. F. Sitdikova

IFM&B, Kazan (Volga Region) Federal University

Email: a-olay@yandex.ru

Department of Human and Animal Physiology

Russian Federation, Kazan

References

  1. Арутюнян А.В., Козина Л.С., Арутюнян В.А. Токсическое влияние пренатальной гипергомоцистеинемии на потомство. Ж. акуш. и жен. болезн. 2010. 59 (4): 16–20.
  2. Арутюнян А.В., Керкешко Г.О., Милютина Ю.П., Щербицкая А.Д., Залозняя И.В. Пренатальный стресс при материнской гипергомоцистеинемии: нарушения развития нервной системы плода и функционального состояния плаценты. Биохимия. 2021. 86 (6): 871–884.
  3. Арутюнян А.В., Милютина Ю.П., Щербицкая А.Д., Керкешко Г.О., Залозняя И.В. Эпигенетические механизмы воздействия пренатальной гипергомоцистеинемии на функциональное состояние плаценты и пластичность нервной системы потомства. Биохимия. 2023. 88 (4): 531–557.
  4. Ивлиева А.Л., Петрицкая Е.Н., Рогаткин Д.А., Демин В.А. Методические особенности применения водного лабиринта Морриса для оценки когнитивных функций у животных. Рос. физиол. журн. им. И.М. Сеченова. 2016. 102 (1): 3–17.
  5. Капица И.Г., Иванова Е.А., Воронина Т.А. Половые особенности поведения крыс с фетальным вальпроатным синдромом. Вестник Московского университета. Серия 16. Биология. 2020. 75(2): 107–114.
  6. Милютина Ю.П., Арутюнян А.В., Пустыгина А.В., Щербицкая А.Д., Залозняя И.В., Зорина И.И. Содержание катехоламинов в надпочечниках крысят, перенесших пренатальную гипергомоцистеинемию. Российский физиологический журнал им. И.М. Сеченова. 2014. 100: 360–369.
  7. Яковлев А.В., Дмитриева С.А., Краснова А.Н., Яковлева О.В., Ситдикова Г.Ф. Уровень карбонилирования белков и активность протеаз в мозге новорожденных крыс с пренатальной гипергомоцистеинемией. Нейрохимия. 2022. 39 (3): 243–250.
  8. Яковлева О.В., Богатова К.С., Скрипникова В.В., Ситдикова Г.Ф. Влияние умеренного хронического стресса самок крыс до и во время беременности на сенсомоторное развитие, уровень тревожности и когнитивные функции потомства. Журн. высш. нерв. деят. им. И.П.Павлова. 2021. 71 (3): 414–428.
  9. Arutjunyan A.V., Milyutina Y.P., Shcherbitskaia A.D., Kerkeshko G.O., Zalozniaia I.V., Mikhel A.V. Neurotrophins of the fetal brain and placenta in prenatal hyperhomocysteinemia. Biochemistry (Mosc.). 2020. 85 (2): 248–259.
  10. Bhatia P., Singh N. Homocysteine excess: delineating the possible mechanism of neurotoxicity and depression. Fundam. Clin. Pharmacol. 2015. 29 (6): 522–528.
  11. Blaise S.A., Nedelec E., Schroeder H., Alberto J.M., Bossenmeyer-Pourie C., Gueant J.L., Daval J.L. Gestational vitamin B deficiency leads to homocysteine-associated brain apoptosis and alters neurobehavioral development in rats. Am. J. Pathol. 2007. 170 (2): 667–679.
  12. Chaudhry S., Taljaard M., MacFarlane A., Gaudet L., Smith G., Rodger M. et al. The role of maternal homocysteine concentration in placenta-mediated complications: findings from the Ottawa and Kingston birth cohort. BMC Pregnancy Childbirth. 2019. 19 (1): 1–10.
  13. Chen J., Shen X., Pardue S., Meram A.T., Rajendran S., Ghali G.E. et al. The ataxia telangiectasia-mutated and rad3-related protein kinase regulates cellular hydrogen sulfide concentrations. DNA Repair. 2019. 73: 55–63.
  14. Dong E., Guidotti A., Grayson D.R., Costa E. Histone hyperacetylation induces demethylation of reelin and 67-kDa glutamic acid decarboxylase promoters. Proc. Natl. Acad. Sci. USA. 2007. 104: 4676–4681. https://doi.org/10.1073/pnas.0700529104.
  15. Estes M.L., McAllister A.K. Maternal immune activation: implications for neuropsychiatric disorders. Science. 2016. 353 (6301): 772–777.
  16. Elsherbiny N.M., Sharma I., Kira D., Alhusban S., Samra Y.A., Jadeja R. et al. Homocysteine Induces Inflammation in Retina and Brain. Biomolecules. 2020. 10 (3): 393. https://doi.org/10.3390/biom10030393
  17. Ferreira D.S., Liu Y., Fernandes M.P., Lagranha C.J. Perinatal low-protein diet alters brainstem antioxidant metabolism in adult offspring. Nutr. Neurosci. 2016. 19 (8): 369–375.
  18. Friso S., Udali S., Santis D.D., Choi S.W. One-carbon metabolism and epigenetics. Mol. Aspects. Med. 2016. 54: 28–36.
  19. Fu Y., Wang X., Kong W. Hyperhomocysteinaemia and vascular injury: advances in mechanisms and drug targets. Br. J. Pharmacol. 2018. 175 (8): 1173–1189.
  20. Geoffroy A., Saber-Cherif L., Pourie G., Helle D., Umoret R., Gueant J.L. et al. Developmental impairments in a rat model of methyl donor deficiency: effects of a late maternal supplementation with folic acid. Int. J. Mol. Sci., 2019. 20 (4): 1–14.
  21. Gerasimova Е., Yakovleva O., Burkhanova G., Ziyatdinova G., Khaertdinov N., Sitdikova G. Effects of maternal hyperhomocysteinemia on the early physical development and neurobehavioral maturation of rat offspring. BioNanoScience. 2017. 7 (1): 155–158.
  22. Gerasimova E., Yakovleva O., Enikeev D., Bogatova K, Hermann A, Giniatullin R., Sitdikova G. Hyperhomocysteinemia increases cortical excitability and aggravates mechanical hyperalgesia and anxiety in a nitroglycerine-induced migraine model in rats. Biomolecules. 2022. 12 (5): 735.
  23. Hutnick L.K., Golshani P., Namihira M., Xue Z., Matynia A., Yang X.W. et al. DNA hypomethylation restricted to the murine forebrain induces cortical degeneration and impairs postnatal neuronal maturation. Hum. Mol. Genet. 2009. 18: 2875–2888. https://doi.org/10.1093/hmg/ddp222.
  24. Jakubowski H. Homocysteine modification in protein structure/function and human disease. Physiol. Rev. 2019. 99 (1): 555–604.
  25. Kalani A., Kamat P.K., Familtseva A., Chaturvedi P., Muradashvili N., Narayanan N. et al. Role of microRNA29b in blood-brain barrier dysfunction during hyperhomocysteinemia: an epigenetic mechanism. J. Cereb. Blood Flow Metab. 2014. 34 (7): 1212–1222.
  26. Kalhan S.C. One carbon metabolism in pregnancy: impact on maternal, fetal and neonatal health. Mol. Cell. Endocrinol. 2016. 435: 48–60.
  27. Kamat P.K., Kalani A., Givvimani S., Sathnur P.B., Tyagi S.C., Tyagi N. Hydrogen sulfide attenuates neurodegeneration and neurovascular dysfunction induced by intra cerebral administered homocysteine in mice. Neuroscience. 2013. 252: 302–319.
  28. Kamat P.K., Kyles P., Kalani A., Tyagi N. Hydrogen sulfide ameliorates homocysteine-induced Alzheimer’s diseaselike pathology, blood–brain barrier disruption, and synaptic disorder. Mol. Neurobiol. 2016. 53 (4): 2451–2467.
  29. Karl T., Pabst R., von Horsten S. Behavioral phenotyping of mice in pharmacological and toxicological research. Exp. Toxicol. Pathol. 2003. 55 (1): 69–83.
  30. Kiss P., Vadasz G., Kiss-Illes B., Horvath G., Tamas A., Reglodi D., Koppan M. Environmental enrichment decreases asphyxia induced neurobehavioral developmental delay in neonatal rats. Int. J. Mol. Sci. 2013. 14 (11): 22258– 22273.
  31. Koz T., Gouwy N.T., Demir N., Nedzvetsky V.S., Etem E., Baydas G. Effects of maternal hyperhomocysteinemia induced by methionine intake on oxidative stress and apoptosis in pup rat brain. Int. J. Dev. Neurosci. 2010. 28 (4): 325–329.
  32. Kraeuter A.K., Guest P.C., Sarnyai Z. The open field test for measuring locomotor activity and anxiety-like behavior. Methods Mol. Biol. 2019. 1916: 99–103.
  33. Kumar M., Modi M., Sandhir R. Hydrogen sulfide attenuates homocysteine-induced cognitive deficits and neuro chemical alterations by improving endogenous hydrogen sulfide levels. Biofactors. 2017. 43 (3): 434–450.
  34. Kumar M., Sandhir R. Hydrogen sulfide attenuates hyperhomocysteinemia-induced mitochondrial dysfunctions in brain. Mitochondrion. 2019. 50: 158–169.
  35. Kurmashova E.D., Gataulina E.D., Zefirov A.L., Sitdikova G.F., Yakovlev A.V. Effects of homocysteine and its derivatives on spontaneous network activity in the hippocampus of neonatal rat pups. Neurosci. Behav. Physiol. 2020. 50: 907–913.
  36. Langie S.A., Achterfeldt S., Gorniak J.P., Halley-Hogg K.J., Oxley D., van Schooten F.J. et al. Maternal folate depletion and high-fat feeding from weaning affects DNA methylation and DNA repair in brain of adult offspring. FASEB J. 2013. 27 (8): 3323–3334.
  37. Li J.G., Barrero C., Gupta S., Kruger W. D., Merali S., Pratico D. Homocysteine modulates 5-lipoxygenase expression level via DNA methylation. Aging Cell. 2017. 16 (2): 273–280.
  38. Li W., Li Z., Zhou D., Zhang X., Yan J., Huang G. Maternal folic acid deficiency stimulates neural cell apoptosis via miR-34a associated with Bcl-2 in the rat fetal brain. Int J Dev Neurosci. 2019. 72: 6–12. https://doi.org/10.1016/j.ijdevneu.2018.11.002
  39. Liu H.Y., Liu S.M., Zhang Y.Z. Maternal folic acid supplementation mediates offspring health via DNA methylation. Reprod. Sci. 2020. 27 (4): 963–976.
  40. Luo B.L., Zhang Z.Z., Chen J., Liu X., Zhang Y.M., Yang Q.G., Chen G.H. Effects of gestational inflammation on age-related cognitive decline and hippocampal GdnfGFRα1 levels in F1 and F2 generations of CD-1 Mice. BMC Neurosci. 2023. 24 (1): 26.
  41. Machado F.R., Ferreira A.G.K., da Cunha A.A., Tagliari B., Mussulini B.H.M., Wofchuk S., Wise A.T.S. Homocysteine alters glutamate uptake and Na+, K+-ATPase activity and oxidative status in rats hippocampus: Protection by vitamin C. Metab. Brain Dis. 2011. 26 (1): 61–67.
  42. Madrid A., Alisch R.S., Rizk E., Papale L.A., Hogan K.J., Iskandar B.J. Transgenerational epigenetic inheritance of axonal regeneration after spinal cord injury. Environ. Epigenet. 2023. 9 (1): 1–7.
  43. Molloy A.M., Mills J.L., McPartlin J., Kirke P.N., Scott J.M., Daly S. Maternal and fetal plasma homocysteine concentrations at birth: the influence of folate, vitamin B12, and the 5,10-methylenetetrahydrofolate reductase 677C-T variant. Am. J. Obstet. Gynecol. 2002. 186 (3): 499–503.
  44. Moretti R., Caruso P. The controversial role of homocysteine in neurology: from labs to clinical practice. Int. J. Mol. Sci. 2019. 20 (1): 231.
  45. Moustafa A.A., Hewedi D.H., Eissa A.M., Frydecka D., Misiak B. Homocysteine levels in schizophrenia and affective disorders-focus on cognition. Front. Behav. Neurosci. 2014. 8: 343.
  46. Ohkawa H., Ohishi N., Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979. 95 (2): 351–358.
  47. Perla-Kajan J., Jakubowski H. Dysregulation of epigenetic mechanisms of gene expression in the pathologies of hyperhomocysteinemia. Int. J. Mol. Sci. 2019. 20 (13): 3140.
  48. Petras M., Tatarkova Z., Kovalska M., Mokra D., Dobrota D., Lehotsky J., Drgova A. Hyperhomocysteinemia as a risk factor for the neuronal system disorders. J. Physiol. Pharmacol. 2014. 65 (1): 15–23.
  49. Pogribny I.P., Karpf A.R., James S.R., Melnyk S., Han T., Tryndyak V.P. Epigenetic alterations in the brains of Fisher 344 rats induced by long-term administration of folate/methyl-deficient diet. Brain Res. 2008. 1237: 25–34.
  50. Portha B., Grandjean V., Movassat J. Mother or Father: who is in the front line? Mechanisms underlying the nongenomic transmission of obesity/diabetes via the maternal or the paternal line. Nutrients. 2019. 11 (2): 233.
  51. Postnikova T.Y., Amakhin D.V., Trofimova A.M., Tumanova N.L., Dubrovskaya N.M., Kalinina D.S. et al. Maternal hyperhomocysteinemia produces memory deficits associated with impairment of long-term synaptic plasticity in young rats. Cells. 2023. 12 (1): 58.
  52. Pustygina A.V., Milyutina Y.P., Zaloznyaya I.V., Arutyunyan A.V. Indices of oxidative stress in the brain of newborn rat subjected to prenatal hyperhomocysteinemia. Neurochem. J. 2015. 9: 60–65.
  53. Razygraev V., Yushina A.D., Titovich I.A. A method of measuring glutathione peroxidase activity in murine brain: application in pharmacological experiment. Bull. Exper. Biol. Med. 2018. 165 (4): 589–592.
  54. Schatz R.A., Wilens T.E., Sellinger O.Z. Decreased transmethylation of biogenic amines after in vivo elevation of brain S-adenosyl-l-homocysteine. J. Neurochem. 1981. 36: 1739–1748. https://doi.org/10.1111/j.1471-4159.1981.tb00426.x.
  55. Scholz J., Niibori Y., Frankland P., Lerch J. Rotarod training in mice is associated with changes in brain structure observable with multimodal MRI. Neuroimage. 2015. 107: 182–189.
  56. Seshadri S., Beiser A., Selhub J., Jacques P.F., Rosenberg I.H., D’Agostino R.B. et al. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N. Engl. J. Med. 2002. 346 (7): 476–483.
  57. Shackelford R., Ozluk E., Islam M.Z., Hopper B., Meram A., Ghali G., Kevil C.G. Hydrogen sulfide and DNA repair. Redox. Biol. 2021. 38: 101675.
  58. Shcherbitskaya A.D., Milyutina Y.P., Zaloznyaya I.V., Arutjunyan A.V., Nalivaeva N.N., Zhuravin I.A. The effects of prenatal hyperhomocysteinemia on the formation of memory and the contents of biogenic amines in the rat hippocampus. Neurochem. J. 2017. 11: 296–301.
  59. Streck E.L., Bavaresco C.S., Netto C.A., Wyse A.T. Chronic hyperhomocysteinemia provoked a memory deficit in rats in the Morris water task. Behave. Brain. Res. 2004. 153 (2): 377–381.
  60. Takeuchi H., Setoguchi T., Machigashira M., Kanbara K., Izumi Y. Hydrogen sulfide inhibits cell proliferation and induces cell cycle arrest via an elevated p21 Cip1 level in Ca9-22 cells. J. Periodontal. Res. 2008. 43 (1): 90–95.
  61. Toohey J.I. Possible Involvement of Hydrosulfide in B12-Dependent Methyl Group Transfer. Molecules. 2017. 22 (4): 582. https://doi.org/10.3390/molecules22040582.
  62. Tothova B., Kovalska M., Kalenska D., Tomascova A., Lehotsky J. Histone Hyperacetylation as a Response to Global Brain Ischemia Associated with Hyperhomocysteinemia in Rats. Int. J. Mol. Sci. 2018. 19. https://doi.org/10.3390/ijms19103147
  63. Tremolizzo L., Doueiri M.S., Dong E., Grayson D.R., Davis J., Pinna G. et al. Valproate corrects the schizophrenia-like epigenetic behavioral modifications induced by methionine in mice. Biol. Psychiatry. 2005. 57: 500–509. https://doi.org/10.1016/j.biopsych.2004.11.046.
  64. Wald D.S., Law M., Morris J.K. Homocysteine and cardiovascular disease: Evidence on causality from a metaanalysis. BMJ. 2002. 325 (7374): 1202.
  65. Weydt P., Hong S.Y., Kliot M., Moller T. Assessing disease onset and progression in the SOD1 mouse model of ALS. Neuroreport. 2003. 14 (7): 1051–1054.
  66. Yakovlev A.V., Kurmashova E., Gataulina E., Gerasimova E., Khalilov I., Sitdikova G.F. Maternal hyperhomocysteinemia increases seizures susceptibility of neonatal rats. Life Sci. 2023. 329: 121953.
  67. Yakovlev A.V., Kurmashova E., Zakharov A., Sitdikova G.F. Network-driven activity and neuronal excitability in hippocampus of neonatal rats with prenatal hyperhomocysteinemia. BioNanoScience. 2018. 8 (1): 304–309.
  68. Yakovleva O., Bogatova K., Mukhtarova R., Yakovlev A., Shakhmatova V., Gerasimova E. et al. Hydrogen sulfide alleviates anxiety, motor, and cognitive dysfunctions in rats with maternal hyperhomocysteinemia via mitigation of oxidative stress. Biomolecules. 2020. 10 (7): 995.
  69. Yakovleva O.V., Ziganshina A.R., Dmitrieva S.A., Arslanova A.N., Yakovlev A.V., Minibayeva F.V. et al. Hydrogen sulfide ameliorates developmental impairments of rat offspring with prenatal hyperhomocysteinemia. Oxid. Med. Cell. Longev. 2018. 2018: 1–13.
  70. Yakovleva O.V., Ziganshina A.R., Gerasimova E.V., Arslanova A.N., Yarmiev I.Z., Zefirov A.L., Sitdikova G.F. The effect of B Vitamins on the early development of rat pups with prenatal hyperhomocysteinemia. Rus. J. Physiol. 2019. 105 (10): 1247–1261.
  71. Yusuf M., Huat B.T.K., Hsu A., Whiteman M., Bhatia M., Moore P.K. Streptozocin-induced diabetes in the rat is associated with enhanced tissue hydrogen sulphide biosynthesis. Biochem. Biophys. 2005. 333: 1146–1152.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The homocysteine levels, litter size and weight, and weight gain in the second generation rats born from dams with HHcy. (a) – the scheme shows the protocol for obtaining second-generation offspring, (б) – homocysteine level in animals born from females with HHcy in the first (HcyF1) and second generation (HcyF2). Percentage of animals with plasma homocysteine concentrations within the normal range (0–9 µM, white sector), mild HHcy (10–20 µM, light gray sector), moderate HHcy (21–50 µM, dark gray sector). (в) – Litter size and total weight (shaded) in control females (white square), in females with HHcy (gray square). (г) – Birth weight of rats in control (white square) and HcyF2 groups (gray square). Rectangle – 25–75%, square inside – average value, central line – median, “whiskers” – minimum/maximum values. (д) – dynamics of weight gain in rat pups of the control (white square) and HcyF2 groups (gray square). * p < 0.05 compared to the control group.

Download (294KB)
3. Fig. 2. Changes in motor and exploratory activity, level of anxiety in the “open field” test in rats in the control and HcyF2 groups. Number of head elevations (a), vertical stands (б), explored holes “head dips” (в), crossed squares (г), acts of grooming (д) and defecation (е). P8, P16, P26 – age periods. White bar – control group, gray bar – HcyF2 group. * p < 0.05 relative to the control group.

Download (290KB)
4. Fig. 3. Distance (a) and time (б) spent on a rotating cylinder in the “rotarod” test and time spent on the grid in the “grip strength” test (в) in rats of the сontrol (white bars) and HcyF2 (gray bars) groups at different ages. P8, P14, P16, P18, P26 – age periods. Rectangle – 25–75%, square inside – average value, central line – median, “whiskers” – minimum/maximum values. * p < 0.05 compared to the control group.

Download (181KB)
5. Fig. 4. Evaluation of learning and memory in HcyF2 rats in the Morris water maze test. (a) – changes in platform search time during training in the Morris water maze in both control (white circles) and HcyF2 (gray squares) rats, (б) – examples of the trajectories of platform search by rats from the control and HcyF2 groups, (в) – platform search time 1 and 24 hours after training. * p < 0.05 relative to control.

Download (260KB)
6. Fig. 5. Levels of sulfides and oxidative stress in the brain of rats, in control and HcyF2 groups. The concentration of HSions (a), rate of HSproduction (б), level of malondialdehyde (MDA) (в), activity of glutathione peroxidases (GPx) (г) in the brain of rats of the control group (white columns), HcyF2 (gray columns). Rectangle – 25–75%, square inside – average value, central line – median, “whiskers” – minimum/maximum values. * p < 0.05 compared to the control group.

Download (207KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies