Comparative analysis of the excitatory and inhibitory hippocampal neurons activity during associative context memory retrieval

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In the present study, we analyzed the differential involvement of hippocampal interneurons and pyramidal neurons in the retrieval of associative aversive context memory. For this purpose, we used a model of associative learning in which the formation of a neutral context memory and the subsequent association of this memory with the footshock US during a brief reminder of the context were significantly separated in time. The activation of hippocampal neurons during associative context memory retrieval in this task was addressed by immunohistochemical detection of the immediate early gene c-fos protein. Retrieval of associative context memory was accompanied by an increase in the number of c-Fos-positive cells in the CA1 region, but not in the CA3 region and the dentate gyrus of the hippocampus. Next, a protein marker, the product of the homeobox-containing gene Emx1, was used to specifically identify excitatory neurons, and the marker glutamate decarboxylase, GAD, the product of the GAD1 and GAD2 genes, was used to specifically identify inhibitory neurons. The results of double staining for cell markers and c-Fos protein showed that during retrieval of associative aversive context memory in the CA1 region of the hippocampus, both Emx1-positive excitatory neurons and, less, GAD-positive inhibitory interneurons were activated. At the same time, regardless of the type of behavioral procedure (retrieval of associative context memory, non-associative context memory, or exploration of context, where animals previously received the footshock but did not remember it), the proportion of activated excitatory and inhibitory neurons remained constant, only the number of activated cells of each type changed. Altogether, our results indicate the specific role of hippocampal CA1 neurons in associative context memory and demonstrate that both excitatory and inhibitory neurons are involved in the encoding of such memory.

Full Text

Restricted Access

About the authors

K. A. Toropova

Institute for advanced brain studies, Lomonosov Moscow State University; Laboratory of neuronal intelligence, Lomonosov Moscow State University

Author for correspondence.
Email: xen.alexander@gmail.com
Russian Federation, Moscow; Moscow

O. I. Ivashkina

Institute for advanced brain studies, Lomonosov Moscow State University; Laboratory of neuronal intelligence, Lomonosov Moscow State University

Email: xen.alexander@gmail.com
Russian Federation, Moscow; Moscow

N. S. Vorobyeva

Institute for advanced brain studies, Lomonosov Moscow State University

Email: xen.alexander@gmail.com
Russian Federation, Moscow

K. V. Anokhin

Institute for advanced brain studies, Lomonosov Moscow State University; Laboratory of neuronal intelligence, Lomonosov Moscow State University

Email: xen.alexander@gmail.com
Russian Federation, Moscow; Moscow

References

  1. Воробьева Н.С., Ивашкина О.И., Торопова К.А., Анохин К.В. Долговременная обстановочная память у мышей: продолжительность и способность к ассоциации с подкрепляющим воздействием. Журн. высш. нервн. деят. им. Павлова. 2016. 66 (3): 352–360.
  2. Торопова К.А., Трошев Д.В., Ивашкина О.И., Анохин К.В. Активация экспрессии c-Fos в ретросплениальной коре, но не гиппокампе, сопровождает формирование ассоциации между обстановкой и безусловным стимулом и ее последующее извлечение у мышей. Журн. высш. нервн. деят. им. Павлова. 2018. 68 (6): 759–774.
  3. Alexander A.S., Robinson J.C., Dannenberg H., Kinsky N.R., Levy S.J., Mau W. еt al. Neurophysiological coding of space and time in the hippocampus, entorhinal cortex, and retrosplenial cortex. Brain Neurosci Adv. 2020. 4: 2398212820972871.
  4. Alexander G.M., Riddick N.V., McCann K.E., Lustberg D., Moy S.S., Dudek S.M. Modulation of CA2 neuronal activity increases behavioral responses to fear conditioning in female mice. Neurobiol Learn Mem. 2019. 163: 107044.
  5. Barrientos R.M., Reilly R.C.O., Rudy J.W. Memory for context is impaired by injecting anisomycin into dorsal hippocampus following context exploration. Behav. Brain. Res. 2002. 134: 299–306.
  6. Besnard A., Gao Y., TaeWoo Kim M., Twarkowski H. et al. Dorsolateral septum somatostatin interneurons gate mobility to calibrate context-specific behavioral fear responses. Nat Neurosci. 2019. 22 (3): 436–446.
  7. Booker S.A., Vida I. Morphological diversity and connectivity of hippocampal interneurons. 2018. Cell Tissue Res. 373 (3): 619–641.
  8. Buhl E., Whittington M. Local Circuits. The Hippocampus Book. Ed. Per Andersen et al. New York: Oxford Neuroscience Series, 2006. 297–320.
  9. Chan C.-H., Godinho L.N., Thomaidou D., Tan S.-S., Gulisano M., Parnavelas J.G. Emx1 is a Marker for Pyramidal Neurons of the Cerebral Cortex. Cerebral Cortex. 2001. 11 (12): 1191–1198.
  10. Comeras L.B., Hörmer N., Mohan Bethuraj P., Tasan R.O. NPY Released from GABA neurons of the dentate gyrus specially reduces contextual fear without affecting cued or trace fear. Front. Synaptic Neurosci. 2021. 13: 635–726.
  11. Curzon P., Rustay N.R., Browman K.E. Cued and Contextual Fear Conditioning for Rodents. Methods of Behavior Analysis in Neuroscience. 2nd ed. Ed. Buccafusco J.J. Boca Raton: CRC Press/Taylor & Francis, 2009. Chapter 2.
  12. Dragunow M., Yamada N., Bilkey D.K., Lawlor P. Induction of immediate-early gene proteins in dentate granule cells and somatostatin interneurons after hippocampal seizures. Brain Res. Mol. Brain Res. 1992. 13 (1–2): 119–126.
  13. Eichenbaum H. What Versus Where: Non-spatial Aspects of Memory Representation by the Hippocampus. Curr Top Behav Neurosci. 2018. 37: 101–117.
  14. Fabene P.F., Andrioli A., Priel M.R., Cavalheiro E.A., Bentivoglio M. Fos induction and persistence, neurodegeneration, and interneuron activation in the hippocampus of epilepsy-resistant versus epilepsy-prone rats after pilocarpine-induced seizures. Hippocampus. 2004. 14 (7): 895–907.
  15. Franklin B.J., Paxinos G. The mouse brain in stereotaxic coordinates, 3rd ed. New York: Academic Press, 2007.
  16. Graham J., D’Ambra A.F., Jung S.J., Teratani-Ota Y., Vishwakarma N., Venkatesh R. et al. High-frequency stimulation of ventral CA1 neurons reduces amygdala activity and inhibits fear. Front Behav Neurosci. 2021. 15: 595049.
  17. Guo N., Soden M.E., Herber C., Kim M.T., Besnard A., Lin Pw. et al. Dentate granule cell recruitment of feedforward inhibition governs engram maintenance and remote memory generalization. Nat Med. 2018. 24 (4): 438–449.
  18. Heroux N.A., Horgan C.J., Stanton M.E. Prefrontal NMDAreceptor antagonism disrupts encoding or consolidation but not retrieval of incidental context learning. Behav. Brain. Res. 2021. 405: 113175.
  19. Hervig M.E., Thomsen M.S., Kalló I., Mikkelsen J.D. Acute phencyclidine administration induces c-Fos-immunoreactivity in interneurons in cortical and subcortical regions. Neuroscience. 2016. 334: 13–25.
  20. Houser C.R. Interneurons of the dentate gyrus: an overview of cell types, terminal fields and neurochemical identity. Prog. Brain Res. 2007. 163: 217–232.
  21. Jarzebowski P., Hay Y.A., Grewe B.F., Paulsen O. Different encoding of reward location in dorsal and intermediate hippocampus. Curr Biol. 2022. 32(4): 834–841.
  22. Josselyn S.A., Tonegawa S. Memory engrams: Recalling the past and imagining the future. Science. 2020. 367 (6473): eaaw4325.
  23. Kaifosh P., Lovett-Barron M., Turi G.F., Reardon T.R., Losonczy A. Septo-hippocampal GABAergic signaling across multiple modalities in awake mice. Nat Neurosci. 2013. 16 (9): 1182–1184.
  24. Khatib D., Ratzon A., Sellevoll M., Barak O., Morris G., Derdikman D. Active experience, not time, determines withinday representational drift in dorsal CA1. Neuron. 2023. 111 (15): 2348–2356.e5.
  25. Kitamura T., Ogawa S.K., Roy D.S., Okuyama T., Morrissey M.D., Smith L.M. et al. Engrams and circuits crucial for systems consolidation of a memory. Science. 2017. 356 (6333): 73–78.
  26. Kobayashi K.S., Matsuo N. Persistent representation of the environment in the hippocampus. Cell Rep. 2023. 42 (1): 111989.
  27. Krueger J.N., Wilmot J.H., Teratani-Ota Y., Puhger K.R., Nemes S.E., Crestani A.P. et al. Amnesia for context fear is caused by widespread disruption of hippocampal activity. Neurobiol Learn Mem. 2020. 175: 107295.
  28. Lee S.A. Navigational roots of spatial and temporal memory structure. Anim. Cogn. 2023. 26 (1): 87–95.
  29. Lee S.H., Marchionni I., Bezaire M., Varga C., Danielson N., Lovett-Barron M. et al. Parvalbumin-positive basket cells differentiate among hippocampal pyramidal cells. Neuron. 2014. 82 (5): 1129–1144.
  30. Lovett-Barron M., Kaifosh P., Kheirbek M.A., Danielson N., Zaremba J.D., Reardon T.R. et al. Dendritic inhibition in the hippocampus supports fear learning. Science. 2014. 343 (6173): 857–863.
  31. Lunardi P., de Souza L.W., Dos Santos B., Popik B., de Oliveira Alvares L. Effect of the endocannabinoid system in memory updating and forgetting. neuroscience. 2020. 444: 33–42.
  32. Matus-Amat P., Higgins E.A., Barrientos R.M., Rudy J.M. The role of the dorsal hippocampus in the acquisition and retrieval of context memory representations. J. Neurosci. 2004. 24 (10): 2431–2439.
  33. Matus-Amat P., Higgins E.A., Sprunger D., Wright-Hardesty K., Rudy J.W. The role of dorsal hippocampus and basolateral amygdala NMDA receptors in the acquisition and retrieval of context and contextual fear memories. Behav. Neurosci. 2007. 121 (4): 721–731.
  34. Maurer A.P., Nadel L. The Continuity of Context: A Role for the hippocampus. Trends Cogn Sci. 2021. 25 (3): 187–199.
  35. Mihály A., Szakács R., Bohata C., Dobó E., Krisztin-Péva B. Time-dependent distribution and neuronal localization of c-fos protein in the rat hippocampus following 4-aminopyridine seizures. Epilepsy Res. 2001. 44 (2–3): 97–108.
  36. Nambu M.F., Lin Y.J., Reuschenbach J., Tanaka K.Z. What does engram encode? Heterogeneous memory engrams for different aspects of experience. Curr. Opin. Neurobiol. 2022. 75: 102568.
  37. Nilchian P., Wilson MA, Sanders H. Animal-to-Animal Variability in Partial Hippocampal Remapping in Repeated Environments. J Neurosci. 2022. 42 (26): 5268–5280.
  38. Papp M., Gruca P., Lason M., Litwa E., Solecki W., Willner P. Optogenetic stimulation of medial prefrontal cortex excites GABAergic cells in the nucleus accumbens and hippocampus of Wistar-Kyoto rats exposed to chronic mild stress. Psychopharmacology (Berl). 2022. 239 (7): 2299–2307.
  39. Peng Z., Houser C.R. Temporal patterns of fos expression in the dentate gyrus after spontaneous seizures in a mouse model of temporal lobe epilepsy. J. Neurosci. 2005. 25 (31): 7210–7220.
  40. Pevzner A., Guzowski J.F. Immediate-early gene transcriptional activation in hippocampus CA1 and CA3 does not accurately reflect rapid, pattern completion-based retrieval of context memory. Learn. Mem. 2014. 22 (1): 1–5.
  41. Pignatelli M., Ryan T.J., Roy D.S., Lovett C., Smith L.M., Muralidhar S., Tonegawa S. Engram cell excitability state determines the efficacy of memory retrieval. Neuron. 2019. 101 (2): 274–284.e5.
  42. Pinizzotto C.C., Heroux N.A., Horgan C.J., Stanton M.E. Role of dorsal and ventral hippocampal muscarinic receptor activity in acquisition and retention of contextual fear conditioning. Behav. Neurosci. 2020. 134 (5): 460–470.
  43. Ramírez-Franco J.J., Munoz-Cuevas F.J., Luján R., Jurado S. Excitatory and inhibitory neurons in the hippocampus exhibit molecularly distinct large dense core vesicles. Front. Cell Neurosci. 2016. 10: 202.
  44. Raza S.A., Albrecht A., Çalışkan G., Müller B., Demiray Y.E., Ludewig S. et al. HIPP neurons in the dentate gyrus mediate the cholinergic modulation of background context memory salience. Nat. Commun. 2017. 8 (1): 189.
  45. Roy D.S., Kitamura T., Okuyama T., Ogawa S.K., Sun C., Obata Y. et al. Distinct Neural circuits for the formation and retrieval of episodic memories. Cell. 2017. 170 (5): 1000– 1012.e19.
  46. Rudick C.N., Woolley C.S. Estradiol induces a phasic Fos response in the hippocampal CA1 and CA3 regions of adult female rats. Hippocampus. 2000. 10 (3): 274–283.
  47. Rudy J.W., Barrientos R.M., O’Reilly R.C. Hippocampal formation supports conditioning to memory of a context. Behav. Neurosci. 2002. 116 (4): 530–538.
  48. Rudy J.W., O’Reilly R.C. Conjunctive representations, the hippocampus, and contextual fear conditioning. Cogn. Affect. Behav. Neurosci. 2001. 1 (1): 66–82.
  49. Silva B.A., Burns A.M., Gräff J. A cFos activation map of remote fear memory attenuation. Psychopharmacology (Berl). 2019. 236 (1): 369–381.
  50. Takahashi S. The hippocampal ensemble code for spatial navigation and episodic memory. Adv. Neurobiol. 2018. 21:49-70.
  51. Takamiya S., Shiotani K., Ohnuki T., Osako Y., Tanisumi Y., Yuki S. et al. Hippocampal CA1 neurons represent positive feedback during the learning process of an associative memory task. Front. Syst. Neurosci. 2021. 15: 718619.
  52. Tasic B., Menon V., Nguyen T.N., Kim T.K., Jarsky T., Yao Z. et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat. Neurosci. 2016. 19 (2): 335–346.
  53. Temel Y., Blokland A., Lim L.W. Deactivation of the parvalbumin-positive interneurons in the hippocampus after fear-like behaviour following electrical stimulation of the dorsolateral periaqueductal gray of rats. Behav. Brain Res. 2012. 233 (2): 322–325.
  54. Tonegawa S., Morrissey M.D., Kitamura T. The role of engram cells in the systems consolidation of memory. Nat. Rev. Neurosci. 2018. 19 (8): 485–498.
  55. Topolnik L., Tamboli S. The role of inhibitory circuits in hippocampal memory processing. Nat. Rev. Neurosci. 2022. 23 (8): 476–492.
  56. Tzilivaki A., Tukker J.J., Maier N., Poirazi P., Sammons R.P., Schmitz D. Hippocampal GABAergic interneurons and memory. Neuron. 2023. 111 (20): 3154–3175.
  57. Wotjak C.T. Sound check, stage design and screen plot – how to increase the comparability of fear conditioning and fear extinction experiments. Psychopharmacology. 2019. 236 (1): 33–48.
  58. Zeisel A., Muñoz-Manchado A.B., Codeluppi S., Lönnerberg P., La Manno G., Juréus A. et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by singlecell RNA-seq. Science. 2015. 347 (6226): 1138–1142.
  59. Zeng H., Sanes J.R. Neuronal cell-type classification: challenges, opportunities and the path forward. Nat. Rev. Neurosci. 2017. 18 (9): 530–546.
  60. Zhang X., Kim J., Tonegawa S. Amygdala reward neurons form and store fear extinction memory. Neuron. 2020. 105 (6): 1077–1093.e7.
  61. Zhu M., Perkins M.G., Lennertz R., Abdulzahir A., Pearce R.A. Dose-dependent suppression of hippocampal contextual memory formation, place cells, and spatial engrams by the NMDAR antagonist (R)-CPP. Neuropharmacology. 2022. 218: 109215.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The scheme of the experiment (a) and the behavior of three groups of mice during context associative memory test (б). Experimental procedures: Preexposure –preliminary unreinforced exploration of a new context, Immediate shock – immediate footshock in a previously explored context, Memory test – context associative memory test. ** – p = 0.008 compared to the Context group, ++ – p = 0.007 compared to the Footshock group, Tamhane’s T2 multiple comparisons test.

Download (160KB)
3. Fig. 2. Activity of three hippocampal regions during context memory retrieval. (a) dentate gyrus (DG), (б) CA1 region, (c) CA3 region. * – p = 0.01, *** – p < 0.0001 compared to the Context group, + – p = 0.03, ++ – p = 0.002 compared to the Footshock group, Tamhane’s T2 multiple comparisons test.

Download (133KB)
4. Fig. 3. The fraction of pyramidal Emx1+ neurons, GAD+ interneurons and neurons of unknown phenotype of all c-Fos+ neurons in three areas of the hippocampus during context memory retrieval. (a) dentate gyrus (DG), (б) CA1 region, (в) CA3 region. For the description of statistics see main text.

Download (174KB)
5. Fig. 4. The number of c-Fos-positive pyramidal Emx1+ neurons and GAD+ interneurons in three hippocampal regions of mice during context memory retrieval. (a) dentate gyrus (DG), (б) CA1 region, (в) CA3 region. * – p < 0.05 compared to the Context group, + – p = 0.02, ++ – p < 0.01, +++ – p = 0.0001 compared to the Footshock group, Tukey’s multiple comparisons test.

Download (197KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies