Fluorescence-guided surgery in patients with tumors near motor areas of the brain

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

There is no common concept regarding the effectiveness of the use of fluorescence-guided surgery in patients with tumors located in eloquent areas of the brain, in which resection can be stopped because the high risk of an increase of neurological deficit.

Objective is to evaluate the effectiveness of fluorescence-guided surgery in patients with tumors located near the motor cortex and corticospinal tract.

Methods. Our research includes 108 adult patients with gliomas near the motor cortex and corticospinal tract divided into two groups depending on the use of fluorescence-guided surgery: control (34 patients without fluorescence) and main (62 patients with fluorescence).

Results. There is no difference between study groups in the radicality of surgery and neurological outcomes.

Conclusion. Fluorescence-guided surgery can be a useful tool as part of complex intraoperative monitoring in patients with tumors located near the motor cortex and corticospinal tract despite the absence of a statistically significant difference.

Full Text

Restricted Access

About the authors

A. V. Kosyrkova

N.N. Burdenko National Medical Research Center of Neurosurgery, Ministry of Healthcare of Russia

Author for correspondence.
Email: akosyrkova@nsi.ru
Russian Federation, Moscow

S. A. Goryaynov

N.N. Burdenko National Medical Research Center of Neurosurgery, Ministry of Healthcare of Russia

Email: akosyrkova@nsi.ru
Russian Federation, Moscow

A. I. Batalov

N.N. Burdenko National Medical Research Center of Neurosurgery, Ministry of Healthcare of Russia

Email: akosyrkova@nsi.ru
Russian Federation, Moscow

R. M. Afandiev

N.N. Burdenko National Medical Research Center of Neurosurgery, Ministry of Healthcare of Russia

Email: akosyrkova@nsi.ru
Russian Federation, Moscow

K. S. Semin

N.N. Burdenko National Medical Research Center of Neurosurgery, Ministry of Healthcare of Russia

Email: akosyrkova@nsi.ru
Russian Federation, Moscow

N. E. Zakharova

N.N. Burdenko National Medical Research Center of Neurosurgery, Ministry of Healthcare of Russia

Email: akosyrkova@nsi.ru
Russian Federation, Moscow

A. A. Ogurtsova

N.N. Burdenko National Medical Research Center of Neurosurgery, Ministry of Healthcare of Russia

Email: akosyrkova@nsi.ru
Russian Federation, Moscow

G. V. Danilov

N.N. Burdenko National Medical Research Center of Neurosurgery, Ministry of Healthcare of Russia

Email: akosyrkova@nsi.ru
Russian Federation, Moscow

A. A. Aristov

N.N. Burdenko National Medical Research Center of Neurosurgery, Ministry of Healthcare of Russia

Email: akosyrkova@nsi.ru
Russian Federation, Moscow

V. A. Okhlopkov

N.N. Burdenko National Medical Research Center of Neurosurgery, Ministry of Healthcare of Russia

Email: akosyrkova@nsi.ru
Russian Federation, Moscow

A. D. Kravtchuk

N.N. Burdenko National Medical Research Center of Neurosurgery, Ministry of Healthcare of Russia

Email: akosyrkova@nsi.ru
Russian Federation, Moscow

I. N. Pronin

N.N. Burdenko National Medical Research Center of Neurosurgery, Ministry of Healthcare of Russia

Email: akosyrkova@nsi.ru
Russian Federation, Moscow

References

  1. Косырькова А. В. Дис. …к. м. н. «Предоперационное планирование и интраоперационная идентификация пирамидных трактов в хирургии супратенториальных опухолей головного мозга». М., 2021.
  2. De Witt Hamer P. C., Robles S. G., Zwinderman A. H., Duffau H., Berger M. S. Impact of intraoperative stimulation brain mapping on glioma surgery outcome: a metaanalysis. J. Clin. Oncol. 2012. 30 (20): 2559–2565. doi: 10.1200/JCO.2011.38.4818. Epub 2012 Apr 23.
  3. González-Darder J.M., González-López P., Talamantes F., Quilis V., Cortés V., García-March G., Roldán P. Multimodal navigation in the functional microsurgical resection of intrinsic brain tumors located in eloquent motor areas: role of tractography. Neurosurg. Focus. 2010. 28 (2): E5. doi: 10.3171/2009.11.FOCUS09234.
  4. Lavrador J. P., Oviedova A., Pereira N., Patel S., Rajwani K. M., Sekhon P., Gullan R., Ashkan K., Vergani F., Bhangoo R. Minimally invasive approach to a deep-seated motor eloquent brain tumour: a technical note. Surg. Case Rep. 2022. 2022 (1): rjab611. doi: 10.1093/jscr/ rjab611. eCollection 2022 Jan.
  5. Li Y., Rey-Dios R., Roberts D. W., Valdés P. A., Cohen-Gadol A. A. Intraoperative fluorescence-guided resection of highgrade gliomas: a comparison of the present techniques and evolution of future strategies. World Neurosurg. 2014. 82 (1–2): 175–85. doi: 10.1016/j.wneu.2013.06.014. Epub 2013 Jul 9. PMID: 23851210
  6. Li Y. M., Suki D., Hess K., Sawaya R. The influence of maximum safe resection of glioblastoma on survival in 1229 patients: Can we do better than grosstotal resection? Neurosurg. 2016. 124 (4): 977–988. doi: 10.3171/2015.5.JNS142087. Epub 2015 Oct 23.
  7. Raffa G., Picht T., Angileri F. F., Youssef M., Conti A., Esposito F. et al. Surgery of malignant motor-eloquent gliomas guided by sodium-fluorescein and navigated transcranial magnetic stimulation: a novel technique to increase the maximal safe resection. J. Neurosurg Sci. 2019. 63 (6): 670–678. doi: 10.23736/S0390– 5616.19.04710–6.Epub 2019 May 6.
  8. Rahman M., Abbatematteo J., De Leo E. K., Kubilis P. S., Vaziri S., Bova F., Sayour E., Mitchell D., QuinonesHinojosa A. The effects of new or worsened postoperative neurological deficits on survival of patients with glioblastoma. J. Neurosurg. 2017. 127 (1): 123–131. doi: 10.3171/2016.7.JNS16396. Epub 2016 Sep 30. PMID: 27689459
  9. Ren X. H., Yang X. C., Huang W., Yang K. Y., Liu L., Qiao H., Guo L. J., Cui Y., Lin S. The application of cortical and subcortical stimulation threshold in identifying the motor pathway and guiding the resection of gliomas in the functional areas. Zhonghua Yi Xue Za Zhi. 2018. 98 (9): 653–657.doi: 10.3760/cma.j.issn. 0376–2491.2018.09.006.
  10. Rossi M., Conti Nibali M., Viganò L., Puglisi G., Howells H., Gay L., Sciortino T., Leonetti A., Riva M., Fornia L., Cerri G., Bello L. Resection of tumors within the primary motor cortex using high-frequency stimulation: oncological and functional efficiency of this versatile approach based on clinical conditions. J. Neurosurg. 2019. 1–13. doi: 10.3171/2019.5.JNS19453.
  11. Sanai N., Berger M. S. Glioma extent of resection and its impact on patient outcome. Neurosurgery. 2008. 62 (4): 753–764; discussion 264–266. doi: 10.1227/01.neu. 0000318159.21731.cf.
  12. Shiban E., Krieg S. M., Haller B., Buchmann N., Obermueller T., Boeckh-Behrens T., Wostrack M., Meyer B., Ringel F. Intraoperative subcortical motor evoked potential stimulation: how close is the corticospinal tract? J. Neurosurg. 2015. 123 (3): 711–720. doi: 10.3171/2014.10. JNS141289. Epub 2015 Jun 5.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Different types of relationship between the corticospinal tract and the tumor according to MR-tractography (intact, displaced, infiltrated, displaced and infiltrated, split).

Download (504KB)
3. Fig. 2. There are motor responses by direct bipolar with a threshold current of 5 mA stimulation in the bright pink fluorescence area.

Download (190KB)
4. Fig. 3. Preoperative MR-images.

Download (205KB)
5. Fig. 4. fMRI (leg and arm areas) and MR-tractography (CSD HARDI, yellow – leg, purple – hand, green – facial muscles) before surgery.

Download (228KB)
6. Fig. 5. Intraoperative photos. The tumor resection cavity with markers of stimulation points (motor response) and residual focus of the fluorescence.

Download (271KB)
7. Fig. 6. Postoperative MRI.

Download (168KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies