Three-Dimensional Simulation of a High-Velocity Body Motion in a Tube with Rarefied Gas

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Flow around a body moving at a high subsonic velocity in a tube filled with rarefied gas is studied. This aerodynamic problem is considered as applied to the task of designing a high-speed vacuum transport at finite Knudsen numbers. Parameters that are close to target characteristics of such systems are chosen, more precisely, speed of about 1000 km/h, significant transverse size of the body, and nitrogen–oxygen mixture (air) as the filling gas are chosen. The problem was solved in a three-dimensional statement.

作者简介

A. Yakunchikov

Faculty of Mechanics and Mathematics, Moscow State University

Email: art-ya@mail.ru
119991, Moscow, Russia

A. Iuldasheva

Faculty of Mechanics and Mathematics, Moscow State University

编辑信件的主要联系方式.
Email: a.r.iuldasheva@gmail.com
119991, Moscow, Russia

参考

  1. Вейнберг Б.П. Движение без трения. СПб.: Естествоиспытатель, 1914.
  2. Musk E. Hyperloop Alpha Documents; SapceX: Hawthorne, CA, USA, 2013.
  3. Hyperloop One Website, https://hyperloop-one.com/.
  4. Hyperloop Transportation Technologies Website, https://www.hyperlooptt.com/.
  5. Kim H., Oh S. Shape optimization of a hyperloop pod’s head and tail using a multi-resolution morphing method// Int. J. Mech. Sci. 2022. V. 223. P. 107227.
  6. Sui Y. et al. An aerothermal study of influence of blockage ratio on a supersonic tube train system// J. Therm. Sci. 2020. V. 1–12.
  7. Chen X. et al. Aerodynamic simulation of evacuated tube maglev trains with different streamlined designs, J. Modern Transp. 2012. V. 20. № 2. P. 115–120.
  8. Zhou P., Zhang J., Li T. Effects of blocking ratio and Mach number on aerodynamic characteristics of the evacuated tube train// Int. J. Rail Transport. 2020. V. 8. № 1. P. 27–44.
  9. Oh J.-S. et al. Numerical Analysis of Aerodynamic Characteristics of Hyperloop System// Energies .2019.V. 12. № 3. P. 518.
  10. Sui Y., Niu J., Ricco P., Yuan Y., Yu Q., Cao X., Yang X. Impact of vacuum degree on the aerodynamics of a high-speed train capsule running in a tube // Int. J. Heat Fluid Flow. 2022. V. 88. P. 108752.
  11. Lluesma-Rodríguez F., González T., Hoyas S. CFD simulation of a hyperloop capsule inside a closed environment// Results Engng. 2021. V. 9. P. 100196.
  12. Le T.T.G. et al. Numerical investigation of aerodynamic drag and pressure waves in hyperloop systems// Mathematics. 2020. V. 8. № 11.
  13. Deng Z., Zhang W., Zheng J., Wang B., Ren Y., Zheng X., Zhang J. A high-temperature superconducting maglev-evacuated tube transport (HTS Maglev-ETT) test system // IEEE Trans. Appl. Supercond. 2017. V. 27. № 6. P. 1–8.
  14. Hruschka R., Klatt D. In-pipe aerodynamic characteristics of a projectile in comparison with free flight for transonic Mach numbers, Shock Waves. 2019. V. 29. № 2. P. 297–306.
  15. Seo Y., Cho M., Kim D.H., Lee T., Ryu J., Lee C. Experimental analysis of aerodynamic characteristics in the Hyperloop system, Aerosp. Sci. Technol., 2023. V. 137. P. 108265.
  16. Donev A., Garcia A.L., Alder B.J. Stochastic Event-Driven Molecular Dynamics // J. Comput. Phys. 2008. V. 227. P. 2644–2665.
  17. Valentini P., Schwartzentruber T.E. A combined Event-Driven/Time-Driven molecular dynamics algorithm for the simulation of shock waves in rarefied gases // J. Comput. Phys. 2009. V. 228. P. 8766–8778.
  18. Bannerman M.N., Sargant R., Lue L., Dynam O. A free O(N) general event-driven molecular-dynamics simulator // J. Comput. Chem. 2011. V. 32. P. 3329–3338.
  19. Akkaya V.R., Kandemir I. Event-driven molecular dynamics simulation of hard-sphere gas flows in microchannels // Math. Probl. Eng. 2015. № 2015.
  20. Yakunchikov A., Kosyanchuk V. Application of event-driven molecular dynamics approach to rarefied gas dynamics problems // Comput. Fluids. 2018. V. 170. P. 121–127.
  21. Yakunchikov A., Kosyanchuk V. Numerical investigation of gas separation in the system of filaments with different temperatures // Int. J. Heat Mass Transf. V. 138. P. 144–151.
  22. Yakunchikov A., Kosyanchuk V. A new principle of separation of gas mixtures in non-stationary transitional flows // Acta Astronaut. 2019.
  23. Artem Yakunchikov. The outflow of gas mixture into vacuum, periodically interrupted by bodies moving towards the jet // Vacuum Volume 209, March 2023, 111778.
  24. Yakunchikov Artem. Heat transfer in a rarefied gas between profiled surfaces moving relative to each other // International Journal of Heat and Mass Transfer Volume 184, March 2022. V. 122339.
  25. Yakunchikov A., Kosyanchuk V., Iuldasheva A. Rotational relaxation model for nitrogen and its application in free jet expansion problem, Phys. Fluids. 2020. V. 32. P. 102006.
  26. Marrone P.V. Temperature and Density Measurements in Free Jets and Shock Waves // Phys. Fluids. 1967. V. 10. P. 521.
  27. Mori H., Niimi T., Akiyama I., Tsuzuki T. Experimental detection of rotational non-Boltzmann distribution in supersonic free molecular nitrogen flows // Phys. Fluids. 2005. V. 17. P. 117103.
  28. Valentini P., Zhang C. and Schwartzentruber T.E. Molecular dynamics simulation of rotational relaxation in nitrogen: Implications for rotational collision number models // Phys. Fluids. 2012. V. 24. P. 106101.
  29. Tokumasu T. and Matsumoto Y. Dynamic molecular collision (DMC) model for rarefied gas flow simulations by the DSMC method // Phys. Fluids. 1999. V. 11. P. 1907–20.
  30. Реализация микроскопической модели столкновений для воздуха, https://multiscale.ru/science/collisionmodel.
  31. Miller S., Luding S. Event-driven molecular dynamics in parallel // J Comput Phys 2004. V. 193. P. 306–16.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (42KB)
3.

下载 (393KB)
4.

下载 (1MB)
5.

下载 (747KB)
6.

下载 (30KB)
7.

下载 (1MB)
8.

下载 (3MB)

版权所有 © А.Н. Якунчиков, А.Р. Юлдашева, 2023

##common.cookie##