APPLICATION OF THE MOSAIC-SKELETON MATRIX APPROXIMATION METHOD IN ELECTROMAGNETIC SCATTERING PROBLEMS
- Authors: Setukha A.V1,2, Stavtsev S.L2, Fetisov S.N3, Mukhin A.N3
-
Affiliations:
- Lomonosov Moscow State University
- ICM RAS
- Lyulka Design Bureau, UEC Ufa Engine–Building Industrial Group branch
- Issue: Vol 65, No 7 (2025)
- Pages: 1178-1195
- Section: General numerical methods
- URL: https://journals.rcsi.science/0044-4669/article/view/304083
- DOI: https://doi.org/10.31857/S0044466925070083
- EDN: https://elibrary.ru/JXZNPM
- ID: 304083
Cite item
Abstract
About the authors
A. V Setukha
Lomonosov Moscow State University; ICM RAS
Email: setuhnav@rambler.ru
Moscow, Russia; Moscow, Russia
S. L Stavtsev
ICM RAS
Email: sstass2000@mail.ru
Moscow, Russia
S. N Fetisov
Lyulka Design Bureau, UEC Ufa Engine–Building Industrial Group branch
Email: sergey.fetisov@okb.umpo.ru
Moscow, Russia
A. N Mukhin
Lyulka Design Bureau, UEC Ufa Engine–Building Industrial Group branch
Email: powersystems@yandex.ru
Moscow, Russia
References
- Davidson D.B. Computational Electromagnetics for RF and Microwave Engineering. Cambridge Univer. Press, 2011.
- Paknys R. Applied Frequency-Domain Electromagnetics. Wiley-IEEE, 2016.
- Григорьев А.Д. Методы вычислительной электродинамики. М.: Физматлит, 2012.
- Bondeson A., Rylander T., Ingelström P. Computational Electromagnetics. Springer Sci., 2005.
- Sumithra P., Thiripurasundari D. A review on computational electromagnetics methods // Adv. Electromagnet. 2017. V. 6. № 1.
- Volakis J.L., Sertel K. Integral Equation Methods for Electromagnetics. SciTech Publ., 2012.
- Gibson W. The Method of Moments in Electromagnetics. Chapman and Hall/CRC, Boca Raton, 2008.
- Tyryshnikov E. Mosaic-skeleton approximations // Calcolo. 1999. V. 33. P. 47–57.
- Iopeлino C.A., Замаранжин Н.Л., Тыртышинков Е.Е. Псевдоскелетные аппроксимации матриц // Докл. АН. 1995. Т. 343. № 2. С. 151–152.
- Tyryshnikov E. Incomplete cross approximation in the mosaic-skeleton method // Comput. 2000. V. 64. P. 367–380.
- Уфимцев П.Я. Теория дифракционных краевых волн в электродинамике. Введение в физическую теорию дифракции. М.: БИНОМ. Лаборатория знаний, 2012.
- Уфимцев П.Я. Метод краевых волн в физической теории дифракции. Сов. радио, 1962.
- de Adana F.S. Practical Applications of Asymptotic Techniques in Electromagnetics. Artech House, 2011.
- Seukha A.V., Stavtsev S.L., Tref’yakova R.M. Application of mosaic-skeleton approximations of matrices in the physical optics method for electromagnetic scattering problems // Comput. Math. and Math. Phys. 2022. V. 62. № 9. P. 1424–1437.
- Антонов В.А., Никифоров И.И., Холшевичков К.В. Элементы теории гравитационного потенциала и некоторые случаи его явного выражения СПб гос. университет, 2008.
- Арагіноч А.А., Seukha A.V., Stavtsev S.L. Parallel implementation for some applications of integral equations method // Lobachevskii J. Math. 2018. V. 39. № 4. P. 477–485.
- Saad Y., Martin H. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems // SIAM J. Sci. and Statist. Comput. 1986. V. 7. № 3. P. 856–869.
- Тыртышинков Е.Е. Методы численного анализа. М.: Изд. центр “Академия”, 2007.
- Tromeur-Dervout D., Vassilevski Y. Choice of initial guess in iterative solution of series of systems arising in fluid flow simulations // J. Comput. Phys. 2006. V. 219. № 1. P. 210–227.
- Sukmanyuk S., Zhelikov D., Valiakhmetov B. Generalized minimal residual method for systems with multiple righthand sides // arXiv preprint arXiv:2408.05513 2024.
- https://cluster2.inm.ras.ru/
Supplementary files
