FIRST BOUNDARY VALUE PROBLEM FOR THE HEAT CONDUCTION EQUATION IN TIME-DEGENERATE DOMAINS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We consider the first boundary value problem in a cone with a degeneracy of the domain at the initial moment of time for the heat equation. Own functions for the problem were found. Estimations of the Green’s function are obtained. For the problem with a zero boundary function, we establish unambiguous solvability in a certain class of functions that admits a definite growth when approaching the vertex of a cone. Similar results are obtained for the cone that degenerates at the final point in time. In addition, we consider the first boundary value problem in domains that are degenerate only in terms of variables.

About the authors

A. N Konenkov

Yesenin Ryazan State University

Email: an.konenkov@gmail.com
Ryazan, Russia

References

  1. Petrowsky I. Zur ersten Randwertaufgabe der Warmeleitungsgleichung // Compositio Mathematica. 1935. V. 1. P. 383–419.
  2. Михайлов В.П. О задаче Дирихле для параболического уравнения. I // Матем. сб. 1963. Т. 103. № 1. С. 40–64.
  3. Михайлов В.П. О задаче Дирихле для параболического уравнения. II // Матем. сб. 1963. Т. 104. № 2. С. 140–159.
  4. Labbas R., Medeghri A., Sadallah B.-K. Sur une equation parabolique dans un domaine non cylindrique // C. R. Acad. Sci. Paris. Ser. I 2002. V. 335. № 12. P. 1017–1022.
  5. Labbas R., Medeghri A., Sadallah B.-K. On a parabolic equation in a triangular domain // Appl. Math. Comput. 2002. V. 130. № 2. P. 511–523.
  6. Kheloufi A., Sadallah B.-K. Study of the heat equation in a symmetric conical type domain of Rn+1 // Math. Meth. Appl. Sci. 2013. V. 37. № 12. P. 1807–1818.
  7. Kheloufi A. Existence and uniqueness results for parabolic equations with Robin type boundary conditions in a nonregular domain of R3 // Appl. Math. Comput. 2013. V. 220. № 9. P. 756–769.
  8. Jenaliyev M., Amangaliyeva M., Kosmakova M., Ramazanov M. About Dirichlet boundary value problem for the heat equation in the infinite angular domain // Boundary Value Problems. 2014. V. 2014. № 1. P. 1–21.
  9. Jenaliyev M.T., Ramazanov M.I., Kosmakova M.T., Tuleutaeva Zh.M. On the solution to a two-dimensional heat conduction problem in a degenerate domain // Euras. Math. J. 2020. V. 11. № 3. P. 89–94.
  10. Jenaliyev M.T., Kosmakova M.T., Tuleutaeva Zh.M. On the Solvability of Heat Boundary Value Problems in Sobolev Spaces // Lobachevskii J. Math. 2022. V. 43. № 8. P. 2133–2144.
  11. Ramazanov M., Jenaliyev M., Gulmanov N. Solution of the boundary value problem of heat conduction in a cone // Opuscula Math. 2022. V. 42. № 1. P. 75–91.
  12. Kheloufi A., Ikassoulene A. Lp-regularity results for 2m-th order parabolic equations in time-varying domains // Miskolc Math. Not. 2022. V. 23. № 1. P. 211–230.
  13. Widder D.V. The Heat Equation. New York: Acad. Press, 1976.
  14. Ладыженская О.А., Солонников В.А., Уральцева Н.Н. Линейные и квазилинейные уравнения параболического типа. М.: Наука, 1967.
  15. Кондратьев В.А. Краевые задачи для эллиптических уравнений в областях с коническими или угловыми точками // Тр. ММО. Т. 16. Изд. МГУ. М., 1967. С. 209–292.
  16. Grieser D. Uniform bounds for eigenfunctions of the laplacian on manifolds with boundary // Commun. Part. Different. Equat. 2002. V. 27. № 7–8. P. 1283–1299.
  17. Liu G. Some inequalities and asymptotic formulas for eigenvalues on Riemannian manifolds // J. Math. Analys. Appl. 2011. V. 376. P. 349–364.
  18. Grisvard P. Elliptic Problems in Nonsmooth Domains. Boston: Pitman Publ. Inc., 1985.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).