THE NEW IS THE WELL-FORGOTTEN OLD — F4 ALGORITHM OPTIMIZATION
- Authors: Styopkin S.M.1
-
Affiliations:
- Yandex
- Issue: Vol 65, No 3 (2025)
- Pages: 338-346
- Section: Optimal control
- URL: https://journals.rcsi.science/0044-4669/article/view/293543
- DOI: https://doi.org/10.31857/S0044466925030082
- EDN: https://elibrary.ru/HSPLUZ
- ID: 293543
Cite item
Abstract
Keywords
References
- Buchberger B. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal // Ph. D. Thesis, Math. Inst., University of Innsbruck, 1965.
- Faugere J. C. A new efficient algorithm for computing Gro¨bner bases (F4) // J. of pure and applied algebra. 1999. V. 139. № 1–3. P. 61–88.
- Boyer B. GBLA: Gro¨bner basis linear algebra package // Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation. 2016. P. 135–142.
- Perry J. An extension of Buchberger’s criteria for Gro¨bner basis decision // LMS Journal of Computation and Mathematics. 2010. V. 13. P. 111–129.
- Peifer D. The F4 Algorithm. 2017.
- Gebauer R., Moller H. M. On an installation of Buchberger’s algorithm // J. of Symbolic computation. 1988. V. 6. № 2–3. P. 275–286.
- Hong H., Perry J. Are Buchberger’s criteria necessary for the chain condition? // J. of Symbolic Computation. 2007. V. 42. № 7. P. 717–732.
- Hong H., Perry J. Corrigendum to? Are Buchberger? s criteria necessary for the chain condition?? // J. of Symbolic Computation. 2008. V. 43. № 3. P. 233.
- Dube T. W. The structure of polynomial ideals and Gro¨bner bases // SIAM Journal on Computing. 1990. V. 19. № 4. P. 750–773.
- Mayr E. W., Meyer A. R. The complexity of the word problems for commutative semigroups and polynomial ideals // Advances in mathematics. 1982. V. 46. № 3. P. 305–329.
Supplementary files
