SUFFICIENT SAMPLE SIZE: LIKELIHOOD BOOTTRAPPING
- Authors: Kiselev N.S1, Grabovoi A.V1
-
Affiliations:
- MIPT
- Issue: Vol 65, No 2 (2025)
- Pages: 235-242
- Section: Computer science
- URL: https://journals.rcsi.science/0044-4669/article/view/287399
- DOI: https://doi.org/10.31857/S0044466925020094
- EDN: https://elibrary.ru/CBDKTA
- ID: 287399
Cite item
Abstract
About the authors
N. S Kiselev
MIPT
Email: kiselev.ns@phystech.edu
Dolgoprudny, Russia
A. V Grabovoi
MIPT
Email: grabovoy.av@phystech.edu
Dolgoprudny, Russia
References
- Robert R Bies, Matthew F Muldoon, Bruce G Pollock et al. A genetic algorithm-based, hybrid machine learning approach to model selection // J. Pharmacokinet. Pharmacodyn. 2006. V. 33. № 2. P. 195.
- Cawley, Gavin C. On over-fitting in model selection and subsequent selection bias in performance evaluation // J. Mach. Learn. Res. 2010. V. 11. № 1. P. 2079–2107.
- Richard H Byrd, Gillian M Chin, Jorge Nocedal, Yuchen Wu. Sample size selection in optimization methods for machine learning // Math. Program. 2012. V. 134. № 1. P. 127–155.
- Rosa L Figueroa, Qing Zeng-Treitler, Sasikiran Kandula, Long H Ngo. Predicting sample size required for classification performance // BMC Med. Inf. Decis. Making. 2012. V. 12. № 1. P. 1–10.
- Indranil Balki, Afsaneh Amirabadi, Jacob Levman et al. Sample-size determination methodologies for machine learning in medical imaging research: a systematic review // Can. Assoc. Radiol. J. 2019. V. 70. № 4. P. 344–353.
- Adcock, C. J. A Bayesian Approach to Calculating Sample Sizes // J. R. Stat. Soc. D. 1988. V. 37. № 4. P. 433.
- Lawrence Joseph, David B. Wolfson, Roxane Du Berger. Sample Size Calculations for Binomial Proportions via Highest Posterior Density Intervals // J. R. Stat. Soc. D. 1995. V. 44. № 2. P. 143–154.
- Steven G Self, Robert H Mauritsen. Power/sample size calculations for generalized linear models // Biometrics. 1988. V. 44. № 1. P. 79–86.
- Gwowen Shieh. On power and sample size calculations for likelihood ratio tests in generalized linear models // Biometrics. 2000. V. 56. № 4. P. 1192–1196.
- Gwowen Shieh. On power and sample size calculations for Wald tests in generalized linear models // J. Stat. Plann. Inference . 2005. V. 128. № 1. P. 43–59.
- Dennis V. Lindley. The choice of sample size // J. R. Stat. Soc. D. 1997. V. 46. № 2. P. 129–138.
- Dennis V. Lindley. On Bayesian analysis, Bayesian decision theory and the sample size problem // J. R. Stat. Soc. D. 1997. V. 46. № 2. P. 139–144.
- Alan E. Gelfand, Fei Wang. A simulation-based approach to Bayesian sample size determination for performance under a given model and for separating models // Stat. Sci. 2002. V. 17. № 2. P. 192-208.
- Jing Cao, J. Jack Lee, Susan Alber. Comparison of Bayesian sample size criteria: ACC, ALC, and WOC // J. Stat. Plann. Inference. 2009. V. 139. № 12. P. 4111–4122.
- Pierpaolo Brutti, Fulvio De Santis, Stefania Gubbiotti. Bayesian-frequentist sample size determination: a game of two priors // METRON 2014. V. 72. № 2. P. 133–151.
- Hamid Pezeshk, Nader Nematollahi, Vahed Maroufy, John Gittins. The choice of sample size: a mixed Bayesian / frequentist approach // Stat. Methods Med. Res. 2008. V. 18. № 2. P. 183–194.
- A. V. Grabovoy, T. T. Gadaev, A. P. Motrenko, V. V. Strijov. Numerical Methods of Sufficient Sample Size Estimation for Generalised Linear Models // Lobachevskii J. Math. 2022. V. 43. № 9. P. 2453–2462.
- Anastasiya Motrenko, Vadim Strijov, Gerhard-Wilhelm Weber. Sample size determination for logistic regression // J. Comput. Appl. Math. 2014. V. 255. № 2. P. 743–752.
- Lawrence Joseph, Roxane Du Berger, Patrick Belisle. Bayesian and mixed Bayesian/likelihood criteria for sample size determination // Stat. Med. 1997. V. 16. № 7. P. 769–781.
- Markelle, Kelly. The UCI Machine Learning Repository. https://archive.ics.uci.edu.
Supplementary files
