Exact formula for the solution of degenerate system of quadratic equations

Cover Page

Cite item

Full Text

Abstract

Abstract. The paper devoted to the solution of nonlinear system of equations F(x) = 0, where the mapping F is quadratic, acting from nn. We consider the case, when the derivative F' is degenerate at the solution point. Based on the constructions of the p-regularity theory was proposed a 2-factor method for solving singular system of equations, which converges at a quadratic rate. Moreover, an exact formula is obtained for solving this quadratic system of equations in the 2-regular case of the mapping F(x).

Full Text

Точная формула для решения вырожденных систем квадратичных уравнений [1]

ВВЕДЕНИЕ

Рассматривается система нелинейных уравнений вида F(x )=0 n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGgbGaaGikai aadIhacaaIPaGaaGypaiaaicdadaWgaaWcbaGaamOBaaqabaaaaa@3DF4@ , где отображение F определено как

F(x)=B [x] 2 +Mx+N, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGgbGaaGikai aadIhacaaIPaGaaGypaiaadkeacaaIBbGaamiEaiaai2fadaahaaWc beqaaiaaikdaaaGccqGHRaWkcaWGnbGaamiEaiabgUcaRiaad6eaca aISaaaaa@45BA@  (1)

где M MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3790@  матрица размерности n×n, N MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGobaaaa@38FA@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3790@  вектор из n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaatuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1risnaaCaaaleqabaGa amOBaaaaaaa@43FF@  и B: n n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGcbGaaiOoam rr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHi1a aWbaaSqabeaacaWGUbaaaOGaeyOKH4Qae8xhHi1aaWbaaSqabeaaca WGUbaaaaaa@49B0@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3790@  квадратичное отображение вида

B [x] 2 =B(x,x)= ( B 1 x,x),,( B n x,x) Τ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGcbGaaG4wai aadIhacaaIDbWaaWbaaSqabeaacaaIYaaaaOGaaGypaiaadkeacaaI OaGaamiEaiaaiYcacaWG4bGaaGykaiaai2dadaWadaqaaiaaiIcaca WGcbWaaSbaaSqaaiaaigdaaeqaaOGaamiEaiaaiYcacaWG4bGaaGyk aiaaiYcacqWIMaYscaaISaGaaGikaiaadkeadaWgaaWcbaGaamOBaa qabaGccaWG4bGaaGilaiaadIhacaaIPaaacaGLBbGaayzxaaWaaWba aSqabeaacqGHKoavaaaaaa@551A@  (2)

для x n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWG4bGaeyicI4 8efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIu daahaaWcbeqaaiaad6gaaaaaaa@4680@  и B i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGcbWaaSbaaS qaaiaadMgaaeqaaaaa@3A08@  есть n×n симметричная матрица, i=1,,n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGPbGaaGypai aaigdacaaISaGaeSOjGSKaaGilaiaad6gaaaa@3E18@ .

В статье описывается применение теории p-регулярности [1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3790@ 3] к решению систем нелинейных уравнений с отображением F, введенным в (1). Цель статьи представить точную формулу для решения уравнения F(x )=0 n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGgbGaaGikai aadIhacaaIPaGaaGypaiaaicdadaWgaaWcbaGaamOBaaqabaaaaa@3DF4@ , где F(x) – квадратичное отображение вида (1) с вырождением в решении x*. Отметим, что нелинейные проблемы, среди которых квадратичные и полиномиальные уравнения, интенсивно исследуются в различных областях знаний и прикладных задачах. Оказывается, как это было показано в [4], нелинейность тесно связана с вырожденностью, а именно: так называемые существенно нелинейные задачи и вырожденные локально эквивалентны (см. [4]). Поэтому в данной статье исследуем системы квадратичных уравнений вида

B [x] 2 +Mx+N =0 n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGcbGaaG4wai aadIhacaaIDbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamytaiaa dIhacqGHRaWkcaWGobGaaGypaiaaicdadaWgaaWcbaGaamOBaaqaba aaaa@43B0@  (3)

с вырождением, как основным характеристическим признаком нелинейности в решении. В данной статье покажем, как на основе теории p-регулярности и специальной конструкции 2-фактор оператора свести исходную задачу к системе линейных уравнений и получить формулу для решения системы (3).

Определение и обозначения. Обозначим через KerS={x n |Sx =0 m } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaqGlbacbaGaa8 xzaiaa=jhacaaMi8ocbiGaa43uaiaai2dacaaI7bGaa4hEaiabgIGi oprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae0xhHi 1aaWbaaSqabeaacaGFUbaaaOGaaGjcVlaaiYhacaaMi8Uaa43uaiaa +HhacaaI9aGaaGimamaaBaaaleaacaWGTbaabeaakiaai2haaaa@570C@  ядро линейного оператора S: n m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGtbGaaiOoam rr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHi1a aWbaaSqabeaacaWGUbaaaOGaeyOKH4Qae8xhHi1aaWbaaSqabeaaca WGTbaaaaaa@49C0@  и через ImS={ym |y=Sx для некоторого xn} MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3790@  образ этого оператора.

Пусть B: n × n n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGcbGaaiOoam rr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHi1a aWbaaSqabeaacaWGUbaaaOGaey41aqRae8xhHi1aaWbaaSqabeaaca WGUbaaaOGaeyOKH4Qae8xhHi1aaWbaaSqabeaacaWGUbaaaaaa@4E06@  непрерывное симметричное квадратичное отображение. 2-форма, ассоциированная с B, это отображение B [] 2 : n n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGcbGaaG4wai abgwSixlaai2fadaahaaWcbeqaaiaaikdaaaGccaGG6aWefv3ySLgz nfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIudaahaaWcbe qaaiaad6gaaaGccqGHsgIRcqWFDeIudaahaaWcbeqaaiaad6gaaaaa aa@4EB9@  определено как B [x] 2 =B(x,x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGcbGaaG4wai aadIhacaaIDbWaaWbaaSqabeaacaaIYaaaaOGaaGypaiaadkeacaaI OaGaamiEaiaaiYcacaWG4bGaaGykaaaa@424D@ , x n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWG4bGaeyicI4 8efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIu daahaaWcbeqaaiaad6gaaaaaaa@4680@ . Будем использовать следующее обозначение Im 2 B={y n |x n :B [x] 2 =y} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaaieaacaWFjbGaa8 xBaiaayIW7daahaaWcbeqaaiaaikdaaaGccaWGcbGaaGypaiaaiUha caWG5bGaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39 gaiuaacqGFDeIudaahaaWcbeqaaiaad6gaaaGccaaMi8UaaGiFaiaa yIW7cqGHdicjcaWG4bGaeyicI4Sae4xhHi1aaWbaaSqabeaacaWGUb aaaOGaaiOoaiaadkeacaaIBbGaamiEaiaai2fadaahaaWcbeqaaiaa ikdaaaGccaaI9aGaamyEaiaai2haaaa@5F2B@  и Ker 2 B={x n |B [x] 2 =0 n } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaaieaacaWFlbGaa8 xzaiaa=jhacaaMi8+aaWbaaSqabeaacaaIYaaaaOGaamOqaiaai2da caaI7bGaamiEaiabgIGioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHr hAGq1DVbacfaGae4xhHi1aaWbaaSqabeaacaWGUbaaaOGaaGjcVlaa iYhacaaMi8UaamOqaiaaiUfacaWG4bGaaGyxamaaCaaaleqabaGaaG Omaaaakiaai2dacaaIWaWaaSbaaSqaaiaad6gaaeqaaOGaaGyFaaaa @5AAA@ . Через N(x*) обозначим окрестность точки x*.

1. ЭЛЕМЕНТЫ ТЕОРИИ 2-РЕГУЛЯРНОСТИ

Напомним некоторые обозначения и определения теории 2-регулярности [1–7] для конечномерного случая и опишем несколько версий 2-фактор метода для решения вырожденных нелинейных уравнений. Проиллюстрируем, как применять модификацию 2-фактор метода для получения формулы решения нелинейной системы уравнений с квадратичным оператором. Рассмотрим нелинейную систему уравнений

F(x )=0 n , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGgbGaaGikai aadIhacaaIPaGaaGypaiaaicdadaWgaaWcbaGaamOBaaqabaGccaaI Saaaaa@3EB4@  (4)

где F MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3790@  достаточно гладкое отображение из n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaatuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1risnaaCaaaleqabaGa amOBaaaaaaa@43FF@  в n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaatuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1risnaaCaaaleqabaGa amOBaaaaaaa@43FF@ , F(x)=( f 1 (x),, f n (x )) Τ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGgbGaaGikai aadIhacaaIPaGaaGypaiaaiIcacaWGMbWaaSbaaSqaaiaaigdaaeqa aOGaaGikaiaadIhacaaIPaGaaGilaiablAciljaaiYcacaWGMbWaaS baaSqaaiaad6gaaeqaaOGaaGikaiaadIhacaaIPaGaaGykamaaCaaa leqabaGaeyiPdqfaaaaa@4A76@ . Пусть x*-решение (4). Отображение F называется регулярным в точке x*, если

Im F ( x )= n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaqGjbGaaeyBai aayIW7ceWGgbGbauaacaaIOaaeaaaaaaaaa8qacaWG4bWaaWbaaSqa beaacqGHxiIkaaGcpaGaaGykaiaai2datuuDJXwAK1uy0HMmaeHbfv 3ySLgzG0uy0HgiuD3BaGqbaiab=1risnaaCaaaleqabaGaamOBaaaa aaa@4CA1@  (5)

или, другими словами,

rank F ( x )=n, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaqGYbGaaeyyai aab6gacaqGRbGaaGjcVlqadAeagaqbaiaaiIcaqaaaaaaaaaWdbiaa dIhadaahaaWcbeqaaiabgEHiQaaak8aacaaIPaGaaGypaiaad6gaca aISaaaaa@446E@

где F ( x ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaaceWGgbGbauaaca aIOaaeaaaaaaaaa8qacaWG4bWaaWbaaSqabeaacqGHxiIkaaGcpaGa aGykaaaa@3CB5@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3790@  матрица Якоби отображения F в точке x*. Отображение называется нерегулярным (вырожденным), если (5) не выполнено. Пусть

n = Y 1 + Y 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaatuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1risnaaCaaaleqabaGa amOBaaaakiaai2dacaWGzbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaS IaamywamaaBaaaleaacaaIYaaabeaakiaaiYcaaaa@4A07@   Y 1 =Im F ( x ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGzbWaaSbaaS qaaiaaigdaaeqaaOGaaGypaiaabMeacaqGTbGaaGjcVlqadAeagaqb aiaaiIcaqaaaaaaaaaWdbiaadIhadaahaaWcbeqaaiabgEHiQaaak8 aacaaIPaaaaa@4298@ , Y 2 = Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGzbWaaSbaaS qaaiaaikdaaeqaaOGaaGypaiaadMfadaqhaaWcbaGaaGymaaqaaiab gwQiEbaaaaa@3E35@ . (6)

Определим отображения

F i (x): n Y i , F i (x)= P Y i F(x),i=1,2, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGgbWaaSbaaS qaaiaadMgaaeqaaOGaaGikaiaadIhacaaIPaGaaiOoamrr1ngBPrwt HrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHi1aaWbaaSqabe aacaWGUbaaaOGaeyOKH4QaamywamaaBaaaleaacaWGPbaabeaakiaa iYcacaaMf8UaaGzbVlaadAeadaWgaaWcbaGaamyAaaqabaGccaaIOa GaamiEaiaaiMcacaaI9aGaamiuamaaBaaaleaacaWGzbWaaSbaaeaa caWGPbaabeaaaeqaaOGaamOraiaaiIcacaWG4bGaaGykaiaaiYcaca aMf8UaaGzbVlaadMgacaaI9aGaaGymaiaaiYcacaaIYaGaaGilaaaa @6480@

где P Y i : n Y i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGqbWaaSbaaS qaaiaadMfadaWgaaqaaiaadMgaaeqaaaqabaGccaGG6aWefv3ySLgz nfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIudaahaaWcbe qaaiaad6gaaaGccqGHsgIRcaWGzbWaaSbaaSqaaiaadMgaaeqaaaaa @4BA4@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3790@  ортопроектор на Y i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGzbWaaSbaaS qaaiaadMgaaeqaaaaa@3A1F@ , i=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGPbGaaGypai aaigdacaaISaGaaGOmaaaa@3C09@ . Тогда F может быть представлено как F(x):= F 1 (x)+ F 2 (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGgbGaaGikai aadIhacaaIPaGaaGOoaiaai2dacaWGgbWaaSbaaSqaaiaaigdaaeqa aOGaaGikaiaadIhacaaIPaGaey4kaSIaamOramaaBaaaleaacaaIYa aabeaakiaaiIcacaWG4bGaaGykaaaa@45FE@  или F(x)=( F 1 (x), F 2 (x )) Τ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGgbGaaGikai aadIhacaaIPaGaaGypaiaaiIcacaWGgbWaaSbaaSqaaiaaigdaaeqa aOGaaGikaiaadIhacaaIPaGaaGilaiaadAeadaWgaaWcbaGaaGOmaa qabaGccaaIOaGaamiEaiaaiMcacaaIPaWaaWbaaSqabeaacqGHKoav aaaaaa@4827@ .

Определение 1. Линейный оператор Ψ 2 (h)L( n , Y 1 Y 2 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacqqHOoqwdaWgaa WcbaGaaGOmaaqabaGccaaIOaGaamiAaiaaiMcacqGHiiIZtuuDJXwA K1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=jrimjaaiIcatu uDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab+1risnaa CaaaleqabaGaamOBaaaakiaaiYcacaWGzbWaaSbaaSqaaiaaigdaae qaaOGaeyyLIuSaamywamaaBaaaleaacaaIYaaabeaakiaaiMcaaaa@5CB1@ , где h n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGObGaeyicI4 8efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIu daahaaWcbeqaaiaad6gaaaaaaa@4670@ , h0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGObGaeyiyIK RaaGimaaaa@3B95@ , определенный как

Ψ 2 (h)= F 1 ( x )+ F 2 ( x )[h], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacqqHOoqwdaWgaa WcbaGaaGOmaaqabaGccaaIOaGaamiAaiaaiMcacaaI9aGabmOrayaa faWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadIhadaahaaWcbeqaai abgEHiQaaakiaaiMcacqGHRaWkceWGgbGbauGbauaadaWgaaWcbaGa aGOmaaqabaGccaaIOaGaamiEamaaCaaaleqabaGaey4fIOcaaOGaaG ykaiaaiUfacaWGObGaaGyxaiaaiYcaaaa@4CBE@

называется 2-фактор оператором. (Или 2-фактор оператором, порожденным вектором h MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGObaaaa@3914@ .)

Рассмотрим нелинейный оператор Ψ 2 [] 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacqqHOoqwdaWgaa WcbaGaaGOmaaqabaGccaaIBbGaeyyXICTaaGyxamaaCaaaleqabaGa aGOmaaaaaaa@3FA7@  такой, что

Ψ 2 [x] 2 := F 1 ( x )[x]+ F 2 ( x )[x ] 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacqqHOoqwdaWgaa WcbaGaaGOmaaqabaGccaaIBbGaamiEaiaai2fadaahaaWcbeqaaiaa ikdaaaGccaaI6aGaaGypaiqadAeagaqbamaaBaaaleaacaaIXaaabe aakiaaiIcacaWG4bWaaWbaaSqabeaacqGHxiIkaaGccaaIPaGaaG4w aiaadIhacaaIDbGaey4kaSIabmOrayaafyaafaWaaSbaaSqaaiaaik daaeqaaOGaaGikaiaadIhadaahaaWcbeqaaiabgEHiQaaakiaaiMca caaIBbGaamiEaiaai2fadaahaaWcbeqaaiaaikdaaaGccaaIUaaaaa@52BA@

Заметим, что Ψ 2 [x] 2 = Ψ 2 (x)[x] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacqqHOoqwdaWgaa WcbaGaaGOmaaqabaGccaaIBbGaamiEaiaai2fadaahaaWcbeqaaiaa ikdaaaGccaaI9aGaeuiQdK1aaSbaaSqaaiaaikdaaeqaaOGaaGikai aadIhacaaIPaGaaG4waiaadIhacaaIDbaaaa@46D7@ .

Определение 2. 2-ядро оператора Ψ 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacqqHOoqwdaWgaa WcbaGaaGOmaaqabaaaaa@3A9E@  обозначим

H 2 =Ker 2 Ψ 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGibWaaSbaaS qaaiaaikdaaeqaaOGaaGypaiaabUeacaqGLbGaaeOCaiaayIW7daah aaWcbeqaaiaaikdaaaGccqqHOoqwdaWgaaWcbaGaaGOmaaqabaGcca aISaaaaa@4313@

где Ker 2 Ψ 2 ={h n | F 1 ( x )[h]+ F 2 ( x )[h ] 2 =0 n } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaqGlbGaaeyzai aabkhacaaMi8+aaWbaaSqabeaacaaIYaaaaOGaeuiQdK1aaSbaaSqa aiaaikdaaeqaaOGaaGypaiaaiUhacaWGObGaeyicI48efv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIudaahaaWcbeqa aiaad6gaaaGccaaMi8UaaGiFaiaayIW7ceWGgbGbauaadaWgaaWcba GaaGymaaqabaGccaaIOaGaamiEamaaCaaaleqabaGaey4fIOcaaOGa aGykaiaaiUfacaWGObGaaGyxaiabgUcaRiqadAeagaqbgaqbamaaBa aaleaacaaIYaaabeaakiaaiIcacaWG4bWaaWbaaSqabeaacqGHxiIk aaGccaaIPaGaaG4waiaadIgacaaIDbWaaWbaaSqabeaacaaIYaaaaO GaaGypaiaaicdadaWgaaWcbaGaamOBaaqabaGccaaI9baaaa@69C2@ . Отметим, что Ker 2 Ψ 2 = k=1 2 Ker k F k (k) ( x ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaqGlbGaaeyzai aabkhacaaMi8+aaWbaaSqabeaacaaIYaaaaOGaeuiQdK1aaSbaaSqa aiaaikdaaeqaaOGaaGypamaauadabeWcbaGaam4Aaiaai2dacaaIXa aabaGaaGOmaaqdcqWIPissaOGaae4saiaabwgacaqGYbGaaGjcVpaa CaaaleqabaGaam4AaaaakiaadAeadaqhaaWcbaGaam4AaaqaaiaaiI cacaWGRbGaaGykaaaakiaaiIcacaWG4bWaaWbaaSqabeaacqGHxiIk aaGccaaIPaaaaa@5290@ ,

где Ker k F k (k) ( x )={ξ n | F k (k) ( x )[ξ ] k =0 n } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaqGlbGaaeyzai aabkhacaaMi8+aaWbaaSqabeaacaWGRbaaaOGaamOramaaDaaaleaa caWGRbaabaGaaGikaiaadUgacaaIPaaaaOGaaGikaiaadIhadaahaa WcbeqaaiabgEHiQaaakiaaiMcacaaI9aGaaG4Eaiabe67a4jabgIGi oprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHi 1aaWbaaSqabeaacaWGUbaaaOGaaGjcVlaaiYhacaaMi8UaamOramaa DaaaleaacaWGRbaabaGaaGikaiaadUgacaaIPaaaaOGaaGikaiaadI hadaahaaWcbeqaaiabgEHiQaaakiaaiMcacaaIBbGaeqOVdGNaaGyx amaaCaaaleqabaGaam4Aaaaakiaai2dacaaIWaWaaSbaaSqaaiaad6 gaaeqaaOGaaGyFaaaa@6AAC@ , k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGRbaaaa@3917@  – ядро оператора F k (k) ()[ ] k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGgbWaa0baaS qaaiaadUgaaeaacaaIOaGaam4AaiaaiMcaaaGccaaIOaGaeyyXICTa aGykaiaaiUfacqGHflY1caaIDbWaaWbaaSqabeaacaWGRbaaaaaa@4550@ , k=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGRbGaaGypai aaigdacaaISaGaaGOmaaaa@3C0B@ .

Определение 3. Отображение F называется 2-регулярным в точке x* на h, если Im Ψ 2 (h)= n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaaciGGjbGaaiyBai aayIW7cqqHOoqwdaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiAaiaa iMcacaaI9aWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiu aacqWFDeIudaahaaWcbeqaaiaad6gaaaaaaa@4CEA@ .

Определение 4. Отображение F называется 2-регулярным в точке x*, если оно 2-регулярно на каждом h H 2 ( x )\ {0 n } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGObGaeyicI4 SaamisamaaBaaaleaacaaIYaaabeaakiaaiIcacaWG4bWaaWbaaSqa beaacqGHxiIkaaGccaaIPaGaaiixaiaaiUhacaaIWaWaaSbaaSqaai aad6gaaeqaaOGaaGyFaaaa@44AE@  или H 2 ( x )={0 n } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGibWaaSbaaS qaaiaaikdaaeqaaOGaaGikaiaadIhadaahaaWcbeqaaiabgEHiQaaa kiaaiMcacaaI9aGaaG4EaiaaicdadaWgaaWcbaGaamOBaaqabaGcca aI9baaaa@4224@ .

2. 2-ФАКТОР МЕТОД РЕШЕНИЯ ВЫРОЖДЕННЫХ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

Для решения системы (4) воспользуемся 2-фактор методом, предложенным в [1]:

x k+1 = x k { F ( x k )+ P Y 2 F ( x k )h} 1 F( x k )+ P Y 2 F ( x k )h , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWG4bWaaSbaaS qaaiaadUgacqGHRaWkcaaIXaaabeaakiaai2dacaWG4bWaaSbaaSqa aiaadUgaaeqaaOGaeyOeI0IaaG4EaiqadAeagaqbaiaaiIcacaWG4b WaaSbaaSqaaiaadUgaaeqaaOGaaGykaiabgUcaRiaadcfadaWgaaWc baGaamywamaaBaaabaGaaGOmaaqabaaabeaakiqadAeagaGbaiaaiI cacaWG4bWaaSbaaSqaaiaadUgaaeqaaOGaaGykaiaadIgacaaI9bWa aWbaaSqabeaacqGHsislcaaIXaaaaOWaaeWaaeaacaWGgbGaaGikai aadIhadaWgaaWcbaGaam4AaaqabaGccaaIPaGaey4kaSIaamiuamaa BaaaleaacaWGzbWaaSbaaeaacaaIYaaabeaaaeqaaOGabmOrayaafa GaaGikaiaadIhadaWgaaWcbaGaam4AaaqabaGccaaIPaGaamiAaaGa ayjkaiaawMcaaiaaiYcaaaa@6083@  (7)

где вектор h, h =1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaadaqbdaqaaiaadI gaaiaawMa7caGLkWoacaaI9aGaaGymaaaa@3DBD@  выбирается таким образом, чтобы матрица F ( x )+ P Y 2 F ( x )h MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaadaqadaqaaiqadA eagaqbaiaaiIcacaWG4bWaaWbaaSqabeaacqGHxiIkaaGccaaIPaGa ey4kaSIaamiuamaaBaaaleaacaWGzbWaaSbaaeaacaaIYaaabeaaae qaaOGabmOrayaagaGaaGikaiaadIhadaahaaWcbeqaaiabgEHiQaaa kiaaiMcacaWGObaacaGLOaGaayzkaaaaaa@4704@  была обратима. Фактически схема (7) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3790@  это схема метода Ньютона для решения системы

Φ(x)=F(x)+ P Y 2 F (x)h =0 n . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacqqHMoGrcaaIOa GaamiEaiaaiMcacaaI9aGaamOraiaaiIcacaWG4bGaaGykaiabgUca RiaadcfadaWgaaWcbaGaamywamaaBaaabaGaaGOmaaqabaaabeaaki qadAeagaqbaiaaiIcacaWG4bGaaGykaiaadIgacaaI9aGaaGimamaa BaaaleaacaWGUbaabeaakiaai6caaaa@4B27@  (8)

Следующий результат устанавливает факт сходимости 2-фактор метода (7).

Теорема 1. Пусть F C 3 ( n ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGgbGaeyicI4 Saam4qamaaCaaaleqabaGaaG4maaaakiaaiIcatuuDJXwAK1uy0HMm aeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1risnaaCaaaleqabaGaam OBaaaakiaaiMcaaaa@4979@  и x* MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3792@  решение (4). Предположим, что существует вектор h n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGObGaeyicI4 8efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIu daahaaWcbeqaaiaad6gaaaaaaa@4670@ , h =1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaadaqbdaqaaiaadI gaaiaawMa7caGLkWoacaaI9aGaaGymaaaa@3DBD@  такой, что F MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGgbaaaa@38F2@   2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaaIYaaaaa@38E3@  -регулярно в точке x * MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWG4bWaaWbaaS qabeaacaaIQaaaaaaa@3A05@  на элементе h, т.е. матрица F ( x )+ P Y 2 F ( x )h MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaaceWGgbGbauaaca aIOaGaamiEamaaCaaaleqabaGaey4fIOcaaOGaaGykaiabgUcaRiaa dcfadaWgaaWcbaGaamywamaaBaaabaGaaGOmaaqabaaabeaakiqadA eagaqbgaqbaiaaiIcacaWG4bWaaWbaaSqabeaacqGHxiIkaaGccaaI PaGaamiAaaaa@4585@  не вырождена.

Тогда существует окрестность N(x*) точки x* такая, что для x 0 N( x ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWG4bWaaSbaaS qaaiaaicdaaeqaaOGaeyicI4SaamOtaiaaiIcacaWG4bWaaWbaaSqa beaacqGHxiIkaaGccaaIPaaaaa@3FF3@  последовательность { x k } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaaI7bGaamiEam aaBaaaleaacaWGRbaabeaakiaai2haaaa@3C56@ , генерируемая 2-фактор методом (7), сходится к x*, причем

x k+1 x C x k x 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaaqaaaaaaaaaWdbm aafmaabaWdaiaadIhadaWgaaWcbaGaam4AaiabgUcaRiaaigdaaeqa aOGaeyOeI0YdbiaadIhadaahaaWcbeqaaiabgEHiQaaaaOGaayzcSl aawQa7a8aacqGHKjYOcaWGdbWdbmaafmaabaWdaiaadIhadaWgaaWc baGaam4AaaqabaGccqGHsislpeGaamiEamaaCaaaleqabaGaey4fIO caaaGccaGLjWUaayPcSdWdamaaCaaaleqabaGaaGOmaaaakiaaiYca aaa@4F2A@  (9)

где C > 0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3792@  независимая константа.

Доказательство. Поскольку схема (7) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3790@  это метод Ньютона, примененный к системе (8), и матрица Φ ( x ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacuqHMoGrgaqbai aaiIcacaWG4bWaaWbaaSqabeaacqGHxiIkaaGccaaIPaaaaa@3D35@  не вырождена из условия 2-регулярности F в точке x* на векторе h, причем Φ( x )=0 n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacqqHMoGrcaaIOa aeaaaaaaaaa8qacaWG4bWaaWbaaSqabeaacqGHxiIkaaGcpaGaaGyk aiaai2dacaaIWaWaaSbaaSqaaiaad6gaaeqaaaaa@3FF8@ , то схему (7) можно переписать в виде

x k+1 = x k Φ ( x k ) 1 Φ( x k ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWG4bWaaSbaaS qaaiaadUgacqGHRaWkcaaIXaaabeaakiaai2dacaWG4bWaaSbaaSqa aiaadUgaaeqaaOGaeyOeI0IafuOPdyKbauaacaaIOaGaamiEamaaBa aaleaacaWGRbaabeaakiaaiMcadaahaaWcbeqaaiabgkHiTiaaigda aaGccqqHMoGrcaaIOaGaamiEamaaBaaaleaacaWGRbaabeaakiaaiM cacaaISaaaaa@4C63@  (10)

для которой будет верна оценка (9). Теорема доказана.

Рассмотрим другую версию 2-фактор метода для решения системы (4). Поскольку

P Y 2 F ( x )h =0 n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGqbWaaSbaaS qaaiaadMfadaWgaaqaaiaaikdaaeqaaaqabaGcceWGgbGbauaacaaI OaGaamiEamaaCaaaleqabaGaey4fIOcaaOGaaGykaiaadIgacaaI9a GaaGimamaaBaaaleaacaWGUbaabeaaaaa@42D9@  (11)

для любого h n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGObGaeyicI4 8efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIu daahaaWcbeqaaiaad6gaaaaaaa@4670@ , то можем рассматривать уравнение

P Y 2 F (x)h =0 n . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGqbWaaSbaaS qaaiaadMfadaWgaaqaaiaaikdaaeqaaaqabaGcceWGgbGbauaacaaI OaGaamiEaiaaiMcacaWGObGaaGypaiaaicdadaWgaaWcbaGaamOBaa qabaGccaaIUaaaaa@4275@  (12)

Причем, если на элементе h существует P Y 2 F ( x * )h 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaadaqadaqaaiaadc fadaWgaaWcbaGaamywamaaBaaabaGaaGOmaaqabaaabeaakiqadAea gaGbaiaaiIcacaWG4bWaaWbaaSqabeaacaaIQaaaaOGaaGykaiaadI gaaiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTiaaigdaaaaaaa@435D@ , то точка x* будет локально единственным решением уравнения (12). Поэтому для решения (4) можно рассмотреть схему

x k+1 = x k P Y 2 F ( x k )h 1 P Y 2 F ( x k )h,k=0,1, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWG4bWaaSbaaS qaaiaadUgacqGHRaWkcaaIXaaabeaakiaai2dacaWG4bWaaSbaaSqa aiaadUgaaeqaaOGaeyOeI0YaaeWaaeaacaWGqbWaaSbaaSqaaiaadM fadaWgaaqaaiaaikdaaeqaaaqabaGcceWGgbGbayaacaaIOaGaamiE amaaBaaaleaacaWGRbaabeaakiaaiMcacaWGObaacaGLOaGaayzkaa WaaWbaaSqabeaacqGHsislcaaIXaaaaOGaamiuamaaBaaaleaacaWG zbWaaSbaaeaacaaIYaaabeaaaeqaaOGabmOrayaafaGaaGikaiaadI hadaWgaaWcbaGaam4AaaqabaGccaaIPaGaamiAaiaaiYcacaaMf8Ua aGzbVlaadUgacaaI9aGaaGimaiaaiYcacaaIXaGaaGilaaaa@5BB5@  (13)

для которой будет справедлива следующая теорема сходимости.

Теорема 2. Пусть F C 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGgbGaeyicI4 Saam4qamaaCaaaleqabaGaaG4maaaaaaa@3C28@ , x* MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3792@  решение (4). Предположим, что существует вектор h MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGObaaaa@3914@ , h =1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaadaqbdaqaaiaadI gaaiaawMa7caGLkWoacaaI9aGaaGymaaaa@3DBD@  такой, что матрица P Y 2 F ( x )h MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGqbWaaSbaaS qaaiaadMfadaWgaaqaaiaaikdaaeqaaaqabaGcceWGgbGbayaacaaI OaGaamiEamaaCaaaleqabaGaey4fIOcaaOGaaGykaiaadIgaaaa@403A@  не вырождена.

Тогда для x 0 N( x * ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWG4bWaaSbaaS qaaiaaicdaaeqaaOGaeyicI4SaamOtaiaaiIcacaWG4bWaaWbaaSqa beaacaaIQaaaaOGaaGykaaaa@3FB8@  последовательность (13) сходится к x*, причем

x k+1 x C x k x 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaadaqbdaqaaiaadI hadaWgaaWcbaGaam4AaiabgUcaRiaaigdaaeqaaOGaeyOeI0IaamiE amaaCaaaleqabaGaey4fIOcaaaGccaGLjWUaayPcSdGaeyizImQaam 4qamaafmaabaGaamiEamaaBaaaleaacaWGRbaabeaakiabgkHiTiaa dIhadaahaaWcbeqaaiabgEHiQaaaaOGaayzcSlaawQa7amaaCaaale qabaGaaGOmaaaakiaaiYcaaaa@4E9E@

где C>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGdbGaaGOpai aaicdaaaa@3A71@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3792@  независимая константа.

Доказательство<. Следует из доказательства сходимости классического метода Ньютона. Отметим, что в схеме (13) оператор P Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGqbWaaSbaaS qaaiaadMfadaWgaaqaaiaaikdaaeqaaaqabaaaaa@3AE3@  определен в точке x*. Способы его построения по текущей точке xk из достаточно малой окрестности N(x*) описаны в [7], и мы не будем здесь останавливаться на этом моменте.

3. НЕЛИНЕЙНЫЕ УРАВНЕНИЯ С КВАДРАТИЧНЫМИ ОТОБРАЖЕНИЯМИ. ТОЧНАЯ ФОРМУЛА

Пусть теперь отображение F определяется как

F(x)=B [x] 2 +Mx+N, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGgbGaaGikai aadIhacaaIPaGaaGypaiaadkeacaaIBbGaamiEaiaai2fadaahaaWc beqaaiaaikdaaaGccqGHRaWkcaWGnbGaamiEaiabgUcaRiaad6eaca aISaaaaa@45BA@  (14)

где M MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3790@  матрица размерности n×n, N MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGobaaaa@38FA@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3790@  вектор из n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaatuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1risnaaCaaaleqabaGa amOBaaaaaaa@43FF@  и B: n n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGcbGaaiOoam rr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHi1a aWbaaSqabeaacaWGUbaaaOGaeyOKH4Qae8xhHi1aaWbaaSqabeaaca WGUbaaaaaa@49B0@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3790@  отображение, определенное формулой (2). Рассмотрим, как 2-фактор метод (13) может быть применен для поиска решения уравнения (14).

Более того, покажем, что 2-фактор метод (13) сходится за одну итерацию к решению x* уравнения (14), и дадим точную формулу для решения x* уравнения (14). Для уравнения (14) предположения теоремы 2 сводятся к существованию вектора h 0 n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGObGaeyiyIK RaaGimamaaBaaaleaacaWGUbaabeaaaaa@3CB4@  такого, что

1)

P Y 2 (2B[ x ]+M)h =0 n , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGqbWaaSbaaS qaaiaadMfadaWgaaqaaiaaikdaaeqaaaqabaGccaaIOaGaaGOmaiaa dkeacaaIBbGaamiEamaaCaaaleqabaGaey4fIOcaaOGaaGyxaiabgU caRiaad2eacaaIPaGaamiAaiaai2dacaaIWaWaaSbaaSqaaiaad6ga aeqaaOGaaiilaaaa@47BF@  (15)

2)

PY22Bh не вырождена . (16)

При этом соотношение (15) выполнено для любого h n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGObGaeyicI4 8efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIu daahaaWcbeqaaiaad6gaaaaaaa@4670@ , так как (2B[ x ]+M)hIm F ( x ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaaIOaGaaGOmai aadkeacaaIBbGaamiEamaaCaaaleqabaGaey4fIOcaaOGaaGyxaiab gUcaRiaad2eacaaIPaGaamiAaiabgIGiolaabMeaieaacaWFTbGaaG jcVlqadAeagaqbaiaaiIcacaWG4bWaaWbaaSqabeaacqGHxiIkaaGc caaIPaaaaa@4AD6@ , а P Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGqbWaaSbaaS qaaiaadMfadaWgaaqaaiaaikdaaeqaaaqabaaaaa@3AE3@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3790@  ортопроектор на (Im F ( x * )) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaaIOaGaaeysai aab2gacaaMi8UabmOrayaafaGaaGikaiaadIhadaahaaWcbeqaaiaa iQcaaaGccaaIPaGaaGykamaaCaaaleqabaGaeyyPI4faaaaa@42DB@ . Проблема состоит в построении оператора P Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGqbWaaSbaaS qaaiaadMfadaWgaaqaaiaaikdaaeqaaaqabaaaaa@3AE3@ , который, вообще говоря, определяется неизвестной точкой x*. Однако при x 0 U ε ( x ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWG4bWaaSbaaS qaaiaaicdaaeqaaOGaeyicI4SaamyvamaaBaaaleaacqaH1oqzaeqa aOGaaGikaabaaaaaaaaapeGaamiEamaaCaaaleqabaGaey4fIOcaaO WdaiaaiMcaaaa@4206@ , где ε>0 достаточно малое, мы можем восстановить оператор P Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGqbWaaSbaaS qaaiaadMfadaWgaaqaaiaaikdaaeqaaaqabaaaaa@3AE3@ , используя только информацию о точке x0. Полное описание этого факта и саму процедуру построения оператора P Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGqbWaaSbaaS qaaiaadMfadaWgaaqaaiaaikdaaeqaaaqabaaaaa@3AE3@  можно найти, например, в [7].

Тогда первая итерация 2-фактор метода дает

x 1 = x 0 (2 P Y 2 Bh) 1 [2 P Y 2 (B x 0 +M)h], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWG4bWaaSbaaS qaaiaaigdaaeqaaOGaaGypaiaadIhadaWgaaWcbaGaaGimaaqabaGc cqGHsislcaaIOaGaaGOmaiaadcfadaWgaaWcbaGaamywamaaBaaaba GaaGOmaaqabaaabeaakiaadkeacaWGObGaaGykamaaCaaaleqabaGa eyOeI0IaaGymaaaakiaaiUfacaaIYaGaamiuamaaBaaaleaacaWGzb WaaSbaaeaacaaIYaaabeaaaeqaaOGaaGikaiaadkeacaWG4bWaaSba aSqaaiaaicdaaeqaaOGaey4kaSIaamytaiaaiMcacaWGObGaaGyxai aaiYcaaaa@52EE@  (17)

что эквивалентно 2 P Y 2 Bh( x 1 x 0 )=(2 P Y 2 B x 0 +M)h MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaaIYaGaamiuam aaBaaaleaacaWGzbWaaSbaaeaacaaIYaaabeaaaeqaaOGaamOqaiaa dIgacaaIOaGaamiEamaaBaaaleaacaaIXaaabeaakiabgkHiTiaadI hadaWgaaWcbaGaaGimaaqabaGccaaIPaGaaGypaiabgkHiTiaaiIca caaIYaGaamiuamaaBaaaleaacaWGzbWaaSbaaeaacaaIYaaabeaaae qaaOGaamOqaiaadIhadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaWG nbGaaGykaiaadIgaaaa@4F7A@ . Учитывая, что 2 P Y 2 B[h, x 0 ]=2 P Y 2 B[ x 0 ,h] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaaIYaGaamiuam aaBaaaleaacaWGzbWaaSbaaeaacaaIYaaabeaaaeqaaOGaamOqaiaa iUfacaWGObGaaGilaiaadIhadaWgaaWcbaGaaGimaaqabaGccaaIDb GaaGypaiaaikdacaWGqbWaaSbaaSqaaiaadMfadaWgaaqaaiaaikda aeqaaaqabaGccaWGcbGaaG4waiaadIhadaWgaaWcbaGaaGimaaqaba GccaaISaGaamiAaiaai2faaaa@4C38@ , получаем

x 1 = x = 1 2 P Y 2 Bh 1 (Mh), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWG4bWaaSbaaS qaaiaaigdaaeqaaOGaaGypaabaaaaaaaaapeGaamiEamaaCaaaleqa baGaey4fIOcaaOWdaiaai2dacqGHsisldaWcaaqaaiaaigdaaeaaca aIYaaaamaadmaabaGaamiuamaaBaaaleaacaWGzbWaaSbaaeaacaaI YaaabeaaaeqaaOGaamOqaiaadIgaaiaawUfacaGLDbaadaahaaWcbe qaaiabgkHiTiaaigdaaaGccqGHflY1caaIOaGaamytaiaadIgacaaI PaGaaGilaaaa@4ED8@  (18)

где вектор h удовлетворяет условию (16).

Отметим, что множество векторов h n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGObGaeyicI4 8efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIu daahaaWcbeqaaiaad6gaaaaaaa@4670@ , для которых выполнено условие (16), является массивным множеством (см. [3]), и поэтому мы не будем в данной статье останавливаться на способах построения векторов h, удовлетворяющих (16).

Пример 1. Рассмотрим отображение F: 2 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGgbGaaiOoam rr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHi1a aWbaaSqabeaacaaIYaaaaOGaeyOKH4Qae8xhHi1aaWbaaSqabeaaca aIYaaaaaaa@4946@  следующего вида:

F(x)= x 1 2 x 2 2 2 x 1 +1 x 1 x 2 x 2 = 0 0 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGgbGaaGikai aadIhacaaIPaGaaGypamaabmaabaqbaeqabiqaaaqaaiaadIhadaqh aaWcbaGaaGymaaqaaiaaikdaaaGccqGHsislcaWG4bWaa0baaSqaai aaikdaaeaacaaIYaaaaOGaeyOeI0IaaGOmaiaadIhadaWgaaWcbaGa aGymaaqabaGccqGHRaWkcaaIXaaabaGaamiEamaaBaaaleaacaaIXa aabeaakiaadIhadaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWG4bWa aSbaaSqaaiaaikdaaeqaaaaaaOGaayjkaiaawMcaaiaai2dadaqada qaauaabeqaceaaaeaacaaIWaaabaGaaGimaaaaaiaawIcacaGLPaaa caaIUaaaaa@546B@  (19)

Представим отображение F в форме (14) при

B= 1 0 0 1 0 1 2 1 2 0 ,M= 2 0 0 1 ,N= 1 0 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGcbGaaGypam aabmaabaqbaeqabiqaaaqaamaabmaabaqbaeqabiGaaaqaaiaaigda aeaacaaIWaaabaGaaGimaaqaaiabgkHiTiaaigdaaaaacaGLOaGaay zkaaaabaWaaeWaaeaafaqabeGacaaabaGaaGimaaqaamaalaaabaGa aGymaaqaaiaaikdaaaaabaWaaSaaaeaacaaIXaaabaGaaGOmaaaaae aacaaIWaaaaaGaayjkaiaawMcaaaaaaiaawIcacaGLPaaacaaISaGa aGzbVlaaywW7caWGnbGaaGypamaabmaabaqbaeqabiGaaaqaaiabgk HiTiaaikdaaeaacaaIWaaabaGaaGimaaqaaiabgkHiTiaaigdaaaaa caGLOaGaayzkaaGaaGilaiaaywW7caaMf8UaamOtaiaai2dadaqada qaauaabeqaceaaaeaacaaIXaaabaGaaGimaaaaaiaawIcacaGLPaaa caaIUaaaaa@5BCE@

Уравнение F(x)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGgbGaaGikai aadIhacaaIPaGaaGypaiaaicdaaaa@3CD5@  имеет локально единственное решение x =(1,0) Τ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWG4bWaaWbaaS qabeaacqGHxiIkaaGccaaI9aGaaGikaiaaigdacaaISaGaaGimaiaa iMcadaahaaWcbeqaaiabgs6aubaaaaa@4055@ . В этом примере Y 1 = 0 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGzbWaaSbaaS qaaiaaigdaaeqaaOGaaGypamaabmaabaqbaeqabiqaaaqaaiaaicda aeaacaaIWaaaaaGaayjkaiaawMcaaaaa@3DC7@ , Y 2 = 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGzbWaaSbaaS qaaiaaikdaaeqaaOGaaGypamrr1ngBPrwtHrhAYaqeguuDJXwAKbst HrhAGq1DVbacfaGae8xhHi1aaWbaaSqabeaacaaIYaaaaaaa@465F@ , P Y 1 =[0] 2×2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGqbWaaSbaaS qaaiaadMfadaWgaaqaaiaaigdaaeqaaaqabaGccaaI9aGaaG4waiaa icdacaaIDbWaaSbaaSqaaiaaikdacqGHxdaTcaaIYaaabeaaaaa@41F4@ , P Y 2 =[I ] 2×2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGqbWaaSbaaS qaaiaadMfadaWgaaqaaiaaikdaaeqaaaqabaGccaaI9aGaaG4waiaa dMeacaaIDbWaaSbaaSqaaiaaikdacqGHxdaTcaaIYaaabeaaaaa@4209@ , h =(1,0) Τ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGObGaaGypai aaiIcacaaIXaGaaGilaiaaicdacaaIPaWaaWbaaSqabeaacqGHKoav aaaaaa@3F1F@ . Следовательно, применяя формулу (18), получаем

x ˜ = 1 2 [ P Y 2 Bh] 1 (Mh)= 1 2 1 0 0 2 2 0 = 1 0 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaaqaaaaaaaaaWdbm aaGaaabaGaamiEaaGaay5adaWaaWbaaSqabeaacqGHxiIkaaGcpaGa aGypaiabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaGaaG4waiaadc fadaWgaaWcbaGaamywamaaBaaabaGaaGOmaaqabaaabeaakiaadkea caWGObGaaGyxamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaaiIcaca WGnbGaamiAaiaaiMcacaaI9aGaeyOeI0YaaSaaaeaacaaIXaaabaGa aGOmaaaadaWadaqaauaabeqaciaaaeaacaaIXaaabaGaaGimaaqaai aaicdaaeaacaaIYaaaaaGaay5waiaaw2faamaabmaabaqbaeqabiqa aaqaaiabgkHiTiaaikdaaeaacaaIWaaaaaGaayjkaiaawMcaaiaai2 dadaqadaqaauaabeqaceaaaeaacaaIXaaabaGaaGimaaaaaiaawIca caGLPaaacaaISaaaaa@5A68@

что означает x ˜ = x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaadaaiaaqaaiaadI haaiaawoWaamaaCaaaleqabaGaey4fIOcaaOGaaGypaiaadIhadaah aaWcbeqaaiabgEHiQaaaaaa@3DEC@ , и мы получаем точную формулу для решения системы квадратичных уравнений (14).

 

1 Работа выполнена при финансовой поддержке РНФ (проект № 21-71-30005).

×

About the authors

Yu. G. Evtushenko

Federal Research Center “Computer Science and Control” of RAS; Moscow Institute of Physics and Technology (National Research University)

Author for correspondence.
Email: yuri-evtushenko@yandex.ru
Russian Federation, Vavilova str., 44, Moscow, 119333; Institutskiy per, 1, Dolgoprudnyi, Moscow Region, 141701

A. A. Tret'yakov

Federal Research Center “Computer Science and Control” of RAS; Siedlce University

Email: prof.tretyakov@gmail.com

Faculty of Exact and Natural Sciences

Russian Federation, Vavilova str., 44, Moscow, 119333; Siedlce, 08-110 Poland

References

  1. Белаш К.Н., Третьяков А.А. Методы решения вырожденных задач // Ж. вычисл. матем. и матем. физ. 1988. Т. 28. №. 7. С. 1097–1102.
  2. Белаш К.Н. Решение систем нелинейных уравнений общего вида // Ж. вычисл. матем. и матем. физ. 1990. Т. 30. №. 6. С. 837–843.
  3. Измайлов A.Ф., Третьяков А.А. Фактор-анализ нелинейных отображений. М.: Наука, 1994.
  4. Tret’yakov A., Marsden J.E. Factor analysis of nonlinear mappings: p-regularity theory // Communications on Pure & Applied Analysis. 2003. Vol. 2. No. 4. P. 425–445.
  5. Facchinei F., Fisher A., Kanzow C. On the Accurate Identification of Active Constraints // SIAM J. Optim. 1998. No. 9. P. 14–32.
  6. Измайлов А.Ф., Третьяков А.А. 2-регулярные решения нелинейных задач. Теория и численные методы. М.: Физматлит, 1999.
  7. Брежнева О.А., Третьяков А.А. Новые методы решения существенно нелинейных задач. М.: ВЦ РАН, 2000.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».