Задача мультипликативного управления для нелинейной модели реакции–диффузии

Cover Page

Cite item

Full Text

Abstract

Исследуется задача мультипликативного управления для уравнения реакции–диффузии, в котором коэффициент реакции нелинейно зависит от концентрации вещества, а также от пространственных переменных. Роль мультипликативных управлений играют коэффициенты диффузии и массобмена. Доказывается разрешимость экстремальной задачи, для конкретного коэффициента реакции выводятся системы оптимальности. На основе анализа данных систем устанавливается свойство релейности мультипликативного и распределенного управлений, а также выводятся оценки локальной устойчивости оптимальных решений относительно малых возмущений как функционалов качества, так и одной из заданных функций краевой задачи. Библ. 36.

Full Text

1. Введение. Постановка краевой задачи

Поиск эффективных механизмов управления физическими полями в сплошных средах остается важной прикладной задачей на протяжении многих лет. Значимый вклад в эти исследования вносит качественный анализ решений краевых и экстремальных задач для моделей тепломассопереноса. В первую очередь отметим работы [1–7], посвященные исследованию краевых и экстремальных задач для моделей тепломассопереноса в приближении Буссинеска. Статьи [8–14] по исследованию моделей реакции–диффузии–конвекции с зависимыми от решения младшими коэффициентами занимают промежуточное место между работами в рамках приближения Буссинеска и его обобщением. Здесь же отметим статьи [15–19], в которых исследованы близкие модели сложного теплообмена.

В работах [20–27] исследованы краевые и экстремальные задачи для моделей тепломассопереноса, обобщающих приближение Буссинеска. Можно надеяться, что в рамках моделей с наименьшим числом упрощающих предположений могут быть реализованы более реалистичные механизмы управления. Также отметим статьи [28–31] по исследованию усложненных моделей гидродинамики, учитывающих в т.ч. реологию.

В настоящей статье исследуется задача мультипликативного управления для уравнения реакции–диффузии, в котором коэффициент реакции нелинейно зависит от концентрации вещества, а также от пространственных переменных. Роль мультипликативных управлений играют зависящие от пространственных переменных коэффициенты реакции и массобмена в уравнении и граничном условии модели. Основной акцент делается на качественном анализе свойств решений рассматриваемой экстремальной задачи, обладающей повышенной нелинейностью. При этом отсутствие конвекции не упрощает исследование данной задачи, но позволяет установить его новые свойства.

В ограниченной области Ω3 с границей G, состоящей из двух частей GD и GN, рассматривается следующая краевая задача:

div(λ(x)φ)+k(φ,x)φ=fв  Ω,(1)

φ=ψна  ΓD,λ(x)(φ/n+α(x)φ)=χна  ΓN.(2)

Здесь j — концентрация загрязняющего вещества, λ=λ(x)>0 — коэффициент диффузии, f — объемная плотность внешних источников, k=k(φ,x) — коэффициент реакции, где  xΩ, α=α(x — коэффициент массобмена. Ниже на задачу (1), (2) при заданных функциях f,λ,k,α,χ и ψ будем ссылаться как на задачу 1.

Глобальная разрешимость и единственность решения задачи 1 вытекает из результатов [9] для монотонной нелинейности k(j, x)j. Также отметим работу [14], в которой доказана глобальная разрешимость близкой краевой задачи с двумя нелинейностями: k(j, x)j в уравнении и a(j, x)j в граничном условии. Поскольку мы используем операторную конструкцию k, обобщающую зависимость четвертой степени от концентрации j, то это ближе к [9]. В настоящей работе для задачи 1 доказывается разрешимость задачи управления с мультипликативными управлениями l и a и распределенным управление f. При этом требования на гладкость управления l снижены, например, по сравнению с [26] и близкими работами.

При k(φ)=æφ4, где æ — размерный параметр, для задачи управления выводятся системы оптимальности. На основе анализа данных систем для двухпараметрической задачи управления, не использующей регуляризацию, установлено, что управления a и f удовлетворяют свойству релейности, иначе, для них справедлив принцип bang–bang. При работе с управлением a используется принцип максимума для концентрации j, установленный в [13]. Для управления f, применяя подход [19], основанный на результатах [32], устанавливается строгое свойство релейности (см. подробнее в [14; 19]). Отметим, что для модели (1), (2) данный подход применим из-за отсутствия конвекции.

В заключительном разделе с использованием системы оптимальности для двухпараметрической задачи мультипликативного управления выводятся оценки локальной устойчивости оптимальных решений относительно малых возмущений как функционалов качества, так и заданной функциий y.

2. Разрешимость краевой задачи

При анализе краевой задачи и задач управления будем использовать функциональные пространства Соболева H S(D), s. Здесь D обозначает область W, либо некоторую подобласть QΩ, либо часть GD границы G. Через s,Q,||s,Q и (,)s,Q будем обозначать норму, полунорму и скалярное произведение в H S(D). Нормы и скалярные произведения в L2(Q), L2(W) либо в L2(GN) будем обозначать соответственно через Q и  (,)Q, Ω и (,) либо ΓN и (,)ΓN.

Введем пространство тестовых функций для концентрации вещества

T={φH1(Ω):φ|ΓD=0}

L+p(D)={kLp(D):k0},p3/2, и функциональные множества

Hλ0s(Ω)={hL(Ω)Hs(Ω)L+(ΓN):hλ0>0в  Ω},s>1/2,

Hλ0r(Ω)={hHr(Ω):hλ0>0в  Ω},r>3/2.

Предположим, что выполняются следующие условия:

(i) W — ограниченная область в 3 с границей ΓC0,1, состоящей из замыканий двух непересекающихся открытых участков GD и GN Γ=Γ¯DΓ¯N, ΓDΓN=, при этом поверхностная мера meas GD > 0 и граница GD участка GD состоит из конечного числа липшицевых кривых или является n-угольником;

(ii) λHλ0s(Ω), s>1/2, ψH1/2(ΓD), αL+2(ΓN), χL2(ΓN);

(iii) для любой функции vH1(Ω) справедливо вложение k(v,)L+p(Ω) для некоторого p3/2, не зависящего от v, и на любом шаре Br={vH1(Ω):v1,Ωr} радиуса r выполняется неравенство

k(v1,)k(v2,)Lp(Ω)Lv1v2L6(Ω)  v1,v2Br,

где константа L зависит от r, но не зависит от v1,v2Br;

(iv) нелинейность k(φ,)φ является монотонной в следующем смысле:

(k(φ1,)φ1k(φ2,)φ2,φ1φ2)0 для всех φ1,φ2H1(Ω);

(v) функция k(φ,) ограничена в том смысле, что существуют положительные константы A1, B1, зависящие от k, такие, что

k(φ,)Lp(Ω)A1φ1,Ωr+B1 для всех φH1(Ω) при p3/2, r0.

Отметим, что условия (iii)–(v) описывают оператор, действующий из H1(Ω) в Lp(Ω), p3/2, позволяющий учитывать достаточно произвольную зависимость коэффициента реакции, как от концентрации j, так и от пространственных переменных. Например,

k=φ4в подобласти  QΩи  k=k0(x)L+3/2(Ω\Q¯)в  Ω\Q¯.

Напомним также, что в силу теоремы вложения Соболева пространство H1(Ω) вкладывается в пространство Ls(Ω) непрерывно при s6 и компактно при s<6, и с некоторой константой Cs, зависящей от s и W, справедлива оценка

φLs(Ω)Csφ1,Ω  φH1(Ω). (3)

Пространство H1/2(ΓN) вкладывается в пространство Lq(ΓN) непрерывно при q4 и компактно при q<4. В силу непрерывности оператора следа γ:H1(Ω)H1/2(Γ) (и его сужения γ|ΓN на ΓNΓ) с константой C~q, зависящей от q и GN, справедлива оценка

φLq(ΓN)C~qφ1,Ω  φH1(Ω). (4)

Справедлива следующая техническая лемма (см. [33]).

Лемма 2.1. При выполнении условий (i), (ii) k0L+p(Ω),p3/2, λHλ0s(Ω), s>3/2, χL2(ΓN) и αL+2(ΓN) существуют положительные константы C1,δ0,δ1, γp, γ1 и γ2, зависящие от Ω  или от Ω  и p, такие, что имеют место следующие соотношения:

|(λh,η)|C1λs,Ωh1,Ωη1,Ω,|(k0h,η)|γpk0Lp(Ω)h1,Ωη1,Ω,(5)

|(χ,φ)ΓN|γ1χΓNφ1,Ω,|(λαφ,η)ΓN|γ2λs,ΩαΓNφ1,Ωη1,Ωφ,ηH1(Ω), (6)

(λh,h)λ*h1,Ω2  hT,λ*δ1λ0.(7)

Из второй оценки в (5) вытекает следующее неравенство для функции k(φ,), удовлетворяющей условию (iv):

|((k(φ1,)k(φ2,))φ,η)|γpLφ1φ2L6(Ω)φ1,Ωη1,Ω  φ,φ1,φ2,ηH1(Ω). (8)

Умножим уравнение (1) на hT и проинтегрируем по W, применяя формулу Грина. Учитывая (2), получим

(λφ,h)+(k(φ,)φ,h)+(λαφ,h)ΓN=(f,h)+(χ,h)ΓN   hT,φ|ΓD=ψ. (9)

Определение 2.1. Функцию φH1(Ω), удовлетворяющую (9), назовем слабым решением задачи 1.

Для доказательства разрешимости задачи 1 используется следующая лемма (см. [33]).

Лемма 2.2. Пусть выполняются условия (i). Тогда для любой функции ψH1/2(ΓD)  существует функция φ0H1(Ω),  такая, что φ0=ψ  на ΓD, и с некоторой константой CΓ,   зависящей от Ω  и ΓD,  справедлива оценка φ01,ΩCΓψ1/2,ΓD.

Из результатов [9], [14] вытекает следующая теорема.

Теорема 2.1. При выполнении условий (i)–(v) существует единственное слабое решение φH1(Ω)  задачи 1 , для которого справедлива оценка

φ1,ΩMφC*M+CΓψ1/2,ΓD, (10)

где CΓ — константа из леммы 1.2, и

MfΩ+γ1χΓN+CΓλL(Ω)ψ1/2,ΓD++CΓγpA1CΓrψ1/2,ΓDr+B1+C~42λL(ΓN)αΓNψ1/2,ΓD. (11)

Пусть в дополнение к (i)–(v) выполняется следующее условие:

(vi) ψminψψmax п.в. на ΓD, fminffmax и λminλλmax п.в. в W, αminααmax и χminχχmax п.в. на ΓN.

Здесь ψmin, ψmax, fmin, fmax, χmin, χmax — неотрицательные числа, а αmin, αmax и λmin, λmax — положительные числа.

Кроме того, будем считать, что коэффициент реакции k удовлетворяет условию

(vii) k=k1(φ), где k1(): — непрерывная неотрицательная функция, при этом функциональные уравнения относительно M1 и m1:

k1(M1)M1=fmaxи    k1(m1)m1=fmin,(12)

имеют хотя бы по одному решению.

Положим

M=max{ψmax,χmax/λminαmin,M1},  m=min{ψmin,χmin/λmaxαmax,m1}.(13)

Справедлива следующая теорема (см. [13]).

Теорема 2.2. Пусть выполняются условия (i)–(vii). Тогда для решения φH1(Ω)  задачи 1 выполняется следующий принцип максимума и минимума:

mφMп.в. в  Ω.(14)

Здесь константы m и M определены в (13), где M1 — минимальный корень первого уравнения в (12) и ,m1 — максимальный корень второго уравнения в (12).

Замечание 2.1. Для степенных коэффициентов реакции k1(φ)=φ2, k2(φ)=φ2|φ| и k3(φ)=φ4 из работ [9–11 и 15; 16], образующих монотонные нелинейности ki(φ)φ, i=1,2,3, параметры m1 и M1 легко вычисляются.

3. Задача мультипликативного управления

В этом разделе исследуется задача управления для системы (1), (2) с двумя мультипликативными управлениями l, a и распределенным управлением f.

Предположим, что l, a и f могут изменяться в подмножествах K1, K2 K1,K2и K3 соответственно, которые удовлетворяют следующему условию:

(j) K1Hλ0s(Ω), s7/6, K2L+2(ΓN) и K3L2(Ω) — непустые выпуклые замкнутые множества.

Пусть в дополнение к (iii)–(v) коэффициент реакции k(φ,) удовлетворяет условию

(viii) для любых w1,w2Br={wH1(Ω):w1,Ωr} справедлива оценка

k(w1,)k(w2,)L6/5(Ω)L1w1w2L5(Ω)r,  r>0,

где L1 — константа, зависящая от r, но не зависящая от w1,w2.

Несложно проверить, что k(φ)=φ4 удовлетворяет условию (viii) так же, как и условиям (iii)–(v).

Введем функциональное пространство Y=T*×H1/2(ΓD), положим u=(λ,α,f), K=K1×K2×K3 и введем оператор F=(F1,F2):H1(Ω)×KY по формулам

F1(φ,u),h=(λφ,h)+(k(φ,)φ,h)+(λαφ,h)ΓN(f,h)(χ,h)ΓN  hT,

F2(φ)=φ|ΓDψH1/2(ΓD),

и перепишем слабую формулировку (9) задачи 1 в виде операторного уравнения F(φ,u)=0.

Пусть I:H1(Ω) — слабополунепрерывный снизу функционал. Рассмотрим следующую задачу мультипликативного управления:

J(φ,u)μ02I(φ)+μ12λs,Ω2+μ22αΓN2+μ32fΩ2inf,F(φ,u)=0,(φ,u)H1(Ω)×K,s7/6. (15)

Через

Zad={(φ,u)H1(Ω)×K:F(φ,u)=0,J(φ,u)<}

обозначим множество допустимых пар для задачи (15).

Пусть в дополнение к (j) выполняются условия:

(jj) множество K1 ограничено в L(Ω) и L(ΓN);

(jjj) μ0>0, μi0, i=1,2,3, и множество K1 ограничено по норме Hs(Ω),s7/6, а множества K2 и K3 ограничены в своих нормах или μi>0, i=0,1,2,3, и функционал I ограничен снизу.

Будем использовать следующие функционалы качества (см. [33]):

I1(φ)=φφdQ2=Q|φφd|2dx,  I2(φ)=φφd1,Q2. (16)

Здесь функция φdL2(Q) имеет смысл концентрации вещества, измеренной в некоторой подобласти QΩ.

Теорема 3.1. Пусть выполняются условия (i)–(v) и (j)–(jjj). Пусть I:X  — слабополунепрерывный снизу функционал и Zad=0 . Тогда существует хотя бы одно решение (x,u)X×K  задачи управления (15).

Доказательство. Пусть (φm,um)=(φm,λm,αm,fm)Zad — минимизирующая последовательность, для которой справедливо равенство

mJ(φm,um)=(φ,u)ZadJ(φ,u)J*.

Из условий (jj), (jjj) и теоремы 2.1 следует, что выполняются оценки

λmL(Ω)+λmL(ΓN)+λms,Ωc1,  s7/6,αmΓNc2,  fmΩc3,  φm1,Ωc4, (17)

где константы c1, c2, c3 и v4 не зависят от m.

Из оценки (17) и условия (j) вытекает существование слабых пределов λ*K1, α*K2, f*K3 и φ*H1(Ω) некоторых подпоследовательностей последовательностей соответственно {λm}, {αm}, {fm} и {φm}. С учетом этого при m имеем

φmφ*слабо в  H1(Ω)и сильно в  Ls(Ω),s<6,

φm|ΓNφ*|ΓNслабо в  H1/2(ΓN)и сильно в  Lq(ΓN),q<4,

fmf*слабо в  L2(Ω),  αmα*слабо в  L2(ΓN),

λmλ*слабо в  Hr(Ω)и сильно в  L6(Ω),r7/6,

λm|ΓNλ*|ΓNслабо в  Hr1/2(ΓN)и сильно в  L4(ΓN).(18)

Ясно, что F 2 ( φ * )=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamOramaaBaaaleaacaaIYaaabeaakiaaiIcacq aHgpGAdaahaaWcbeqaaiaaiQcaaaGccaaIPaGaaGypaiaaicdaaaa@38E9@ . Покажем, что F 1 ( φ * , u * )=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamOramaaBaaaleaacaaIXaaabeaakiaaiIcacq aHgpGAdaahaaWcbeqaaiaaiQcaaaGccaaISaGaamyDamaaCaaaleqa baGaaGOkaaaakiaaiMcacaaI9aGaaGimaaaa@3B83@ , т.е. что

  ( λ * φ * ,h)+(k( φ * ,) φ * ,h)+ ( λ * α * φ * ,h) Γ N =( f * ,h)+ (χ,h) Γ N hT. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikaiabeU7aSnaaCaaaleqabaGaaGOkaaaaki abgEGirlabeA8aQnaaCaaaleqabaGaaGOkaaaakiaaiYcacqGHhis0 caWGObGaaGykaiabgUcaRiaaiIcacaWGRbGaaGikaiabeA8aQnaaCa aaleqabaGaaGOkaaaakiaaiYcacqGHflY1caaIPaGaeqOXdO2aaWba aSqabeaacaaIQaaaaOGaaGilaiaadIgacaaIPaGaey4kaSIaaGikai abeU7aSnaaCaaaleqabaGaaGOkaaaakiabeg7aHnaaCaaaleqabaGa aGOkaaaakiabeA8aQnaaCaaaleqabaGaaGOkaaaakiaaiYcacaWGOb GaaGykamaaBaaaleaacqqHtoWrdaWgaaqaaiaad6eaaeqaaaqabaGc caaI9aGaaGikaiaadAgadaahaaWcbeqaaiaaiQcaaaGccaaISaGaam iAaiaaiMcacqGHRaWkcaaIOaGaeq4XdmMaaGilaiaadIgacaaIPaWa aSbaaSqaaiabfo5ahnaaBaaabaGaamOtaaqabaaabeaakiaaysW7cq GHaiIicaWGObGaeyicI48efv3ySLgznfgDOfdaryqr1ngBPrginfgD ObYtUvgaiqaacqWFtepvcaaIUaaaaa@7899@ (19)

При этом пара ( φ m , u m ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikaiabeA8aQnaaBaaaleaacaWGTbaabeaaki aaiYcacaWG1bWaaSbaaSqaaiaad2gaaeqaaOGaaGykaaaa@38C0@  удовлетворяет равенству

  ( λ m φ m ,h)+(k( φ m ,) φ m ,h)+ ( λ m α m φ m ,h) Γ N =( f m ,h)+ (χ,h) Γ N hT. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikaiabeU7aSnaaBaaaleaacaWGTbaabeaaki abgEGirlabeA8aQnaaBaaaleaacaWGTbaabeaakiaaiYcacqGHhis0 caWGObGaaGykaiabgUcaRiaaiIcacaWGRbGaaGikaiabeA8aQnaaBa aaleaacaWGTbaabeaakiaaiYcacqGHflY1caaIPaGaeqOXdO2aaSba aSqaaiaad2gaaeqaaOGaaGilaiaadIgacaaIPaGaey4kaSIaaGikai abeU7aSnaaBaaaleaacaWGTbaabeaakiabeg7aHnaaBaaaleaacaWG TbaabeaakiabeA8aQnaaBaaaleaacaWGTbaabeaakiaaiYcacaWGOb GaaGykamaaBaaaleaacqqHtoWrdaWgaaqaaiaad6eaaeqaaaqabaGc caaI9aGaaGikaiaadAgadaWgaaWcbaGaamyBaaqabaGccaaISaGaam iAaiaaiMcacqGHRaWkcaaIOaGaeq4XdmMaaGilaiaadIgacaaIPaWa aSbaaSqaaiabfo5ahnaaBaaabaGaamOtaaqabaaabeaakiaaysW7ca aMe8UaeyiaIiIaamiAaiabgIGioprr1ngBPrwtHrhAXaqeguuDJXwA KbstHrhAG8KBLbaceaGae83eXtLaaGOlaaaa@7C0E@ (20)

Перейдем в (20) к пределу при m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamyBaiabgkziUkabg6HiLcaa@35EE@ . Из (18) следует, что все линейные слагаемые в (20) переходят в соответствующие слагаемые в (19). Поэтому перейдем к нелинейным слагаемым, начиная с (k( φ m ,) φ m ,h) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikaiaadUgacaaIOaGaeqOXdO2aaSbaaSqaai aad2gaaeqaaOGaaGilaiabgwSixlaaiMcacqaHgpGAdaWgaaWcbaGa amyBaaqabaGccaaISaGaamiAaiaaiMcaaaa@3FC5@ . Рассуждая как в [9], получаем, что

|(k( φ m ,) φ m k( φ * ,) φ * ,h)|0ïðèmhT. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGiFaiaaiIcacaWGRbGaaGikaiabeA8aQnaaBa aaleaacaWGTbaabeaakiaaiYcacqGHflY1caaIPaGaeqOXdO2aaSba aSqaaiaad2gaaeqaaOGaeyOeI0Iaam4AaiaaiIcacqaHgpGAdaahaa WcbeqaaiaaiQcaaaGccaaISaGaeyyXICTaaGykaiabeA8aQnaaCaaa leqabaGaaGOkaaaakiaaiYcacaWGObGaaGykaiaaiYhacqGHsgIRca aIWaGaaGjcVlaaysW7caqGVdGaaei8aiaabIoacaaMe8UaaGjcVlaa d2gacqGHsgIRcqGHEisPcaaMe8UaeyiaIiIaamiAaiabgIGioprr1n gBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaGae83eXtLaaGOl aaaa@6FD2@

Рассмотрим далее нелинейные слагаемые, содержащие мультипликативные управления. Для ( λ m φ m ,h) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikaiabeU7aSnaaBaaaleaacaWGTbaabeaaki abgEGirlabeA8aQnaaBaaaleaacaWGTbaabeaakiaaiYcacqGHhis0 caWGObGaaGykaaaa@3D73@  справедливо равенство

  ( λ m φ m ,h)( λ * φ * ,h)=(( λ m λ * ) φ m ,h)+(( φ m φ * ), λ * h). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikaiabeU7aSnaaBaaaleaacaWGTbaabeaaki abgEGirlabeA8aQnaaBaaaleaacaWGTbaabeaakiaaiYcacqGHhis0 caWGObGaaGykaiabgkHiTiaaiIcacqaH7oaBdaahaaWcbeqaaiaaiQ caaaGccqGHhis0cqaHgpGAdaahaaWcbeqaaiaaiQcaaaGccaaISaGa ey4bIeTaamiAaiaaiMcacaaI9aGaaGikaiaaiIcacqaH7oaBdaWgaa WcbaGaamyBaaqabaGccqGHsislcqaH7oaBdaahaaWcbeqaaiaaiQca aaGccaaIPaGaey4bIeTaeqOXdO2aaSbaaSqaaiaad2gaaeqaaOGaaG ilaiabgEGirlaadIgacaaIPaGaey4kaSIaaGikaiabgEGirlaaiIca cqaHgpGAdaWgaaWcbaGaamyBaaqabaGccqGHsislcqaHgpGAdaahaa WcbeqaaiaaiQcaaaGccaaIPaGaaGilaiabeU7aSnaaCaaaleqabaGa aGOkaaaakiabgEGirlaadIgacaaIPaGaaGOlaaaa@6D74@ (21)

Поскольку λ * h L 2 (Ω) 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeq4UdW2aaWbaaSqabeaacaaIQaaaaOGaey4bIe TaamiAaiabgIGiolaadYeadaahaaWcbeqaaiaaikdaaaGccaaIOaGa euyQdCLaaGykamaaCaaaleqabaGaaG4maaaaaaa@3DD5@ , то в силу (18) получаем, что

 φmφλh0 при mhT. (22)

Используя последовательность { h n } C ( Ω ¯ ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaG4EaiaadIgadaWgaaWcbaGaamOBaaqabaGcca aI9bGaeyicI4Saam4qamaaCaaaleqabaGaeyOhIukaaOGaaGikamaa naaabaGaeuyQdCfaaiaaiMcaaaa@3CB8@ , сходящуюся к h в H–1 (), для первого слагаемого в (21) получаем равенство

  (( λ m λ * ) φ m ,h)=(( λ m λ * ) φ m , h n )+(( λ m λ * ) φ m ,(h h n )). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikaiaaiIcacqaH7oaBdaWgaaWcbaGaamyBaa qabaGccqGHsislcqaH7oaBdaahaaWcbeqaaiaaiQcaaaGccaaIPaGa ey4bIeTaeqOXdO2aaSbaaSqaaiaad2gaaeqaaOGaaGilaiabgEGirl aadIgacaaIPaGaaGypaiaaiIcacaaIOaGaeq4UdW2aaSbaaSqaaiaa d2gaaeqaaOGaeyOeI0Iaeq4UdW2aaWbaaSqabeaacaaIQaaaaOGaaG ykaiabgEGirlabeA8aQnaaBaaaleaacaWGTbaabeaakiaaiYcacqGH his0caWGObWaaSbaaSqaaiaad6gaaeqaaOGaaGykaiabgUcaRiaaiI cacaaIOaGaeq4UdW2aaSbaaSqaaiaad2gaaeqaaOGaeyOeI0Iaeq4U dW2aaWbaaSqabeaacaaIQaaaaOGaaGykaiabgEGirlabeA8aQnaaBa aaleaacaWGTbaabeaakiaaiYcacqGHhis0caaIOaGaamiAaiabgkHi TiaadIgadaWgaaWcbaGaamOBaaqabaGccaaIPaGaaGykaiaai6caaa a@6BE2@ (23)

В силу равномерной ограниченности величин λ m λ * L (Ω) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaqeeuuDJXwAKbsr4rNCHbaceaGae8xjIaLaeq4UdW 2aaSbaaSqaaiaad2gaaeqaaOGaeyOeI0Iaeq4UdW2aaWbaaSqabeaa caaIQaaaaOGae8xjIa1aaSbaaSqaaiaadYeadaahaaqabeaacqGHEi sPaaGaaGikaiabfM6axjaaiMcaaeqaaaaa@445C@  и φ m Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaqeeuuDJXwAKbsr4rNCHbaceaGae8xjIaLaey4bIe TaeqOXdO2aaSbaaSqaaiaad2gaaeqaaOGae8xjIa1aaSbaaSqaaiab fM6axbqabaaaaa@3E96@  по m существует такой номер N=N(ε,h) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamOtaiaai2dacaWGobGaaGikaiabew7aLjaaiY cacaWGObGaaGykaaaa@38BA@ , что для второго слагаемого в (23) справедливо неравенство

|(( λ m λ * ) φ m ,(h h n ))| MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGiFaiaaiIcacaaIOaGaeq4UdW2aaSbaaSqaai aad2gaaeqaaOGaeyOeI0Iaeq4UdW2aaWbaaSqabeaacaaIQaaaaOGa aGykaiabgEGirlabeA8aQnaaBaaaleaacaWGTbaabeaakiaaiYcacq GHhis0caaIOaGaamiAaiabgkHiTiaadIgadaWgaaWcbaGaamOBaaqa baGccaaIPaGaaGykaiaaiYhacqGHKjYOaaa@4A8D@

  λ m λ * L (Ω) φ m Ω (h h n ) Ω ε/2,    nN, m. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeyizImAeeuuDJXwAKbsr4rNCHbaceaGae8xjIa Laeq4UdW2aaSbaaSqaaiaad2gaaeqaaOGaeyOeI0Iaeq4UdW2aaWba aSqabeaacaaIQaaaaOGae8xjIa1aaSbaaSqaaiaadYeadaahaaqabe aacqGHEisPaaGaaGikaiabfM6axjaaiMcaaeqaaOGae8xjIaLaey4b IeTaeqOXdO2aaSbaaSqaaiaad2gaaeqaaOGae8xjIa1aaSbaaSqaai abfM6axbqabaGccqWFLicucqGHhis0caaIOaGaamiAaiabgkHiTiaa dIgadaWgaaWcbaGaamOBaaqabaGccaaIPaGae8xjIa1aaSbaaSqaai abfM6axbqabaGccqGHKjYOcqaH1oqzcaaIVaGaaGOmaiaaiYcacaqG GaGaaeiiaiaabccacaqGGaGaamOBaiabgwMiZkaad6eacaaISaGaae iiaiaad2gacqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0Hgi uD3BaGqbaiab+vriojaai6caaaa@742A@ (24)

Из равномерной ограниченности величин h n L (Ω) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaqeeuuDJXwAKbsr4rNCHbaceaGae8xjIaLaey4bIe TaamiAamaaBaaaleaacaWGUbaabeaakiab=vIiqnaaBaaaleaacaWG mbWaaWbaaeqabaGaeyOhIukaaiaaiIcacqqHPoWvcaaIPaaabeaaaa a@4190@  по n и φ m Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaqeeuuDJXwAKbsr4rNCHbaceaGae8xjIaLaey4bIe TaeqOXdO2aaSbaaSqaaiaad2gaaeqaaOGae8xjIa1aaSbaaSqaaiab fM6axbqabaaaaa@3E96@  по m и из (18) следует существование такого номера M=M(ε,h) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamytaiaai2dacaWGnbGaaGikaiabew7aLjaaiY cacaWGObGaaGykaaaa@38B8@ , что для первого слагаемого в (23) справедливо неравенство

|(( λ m λ * ) φ m , h n )| MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGiFaiaaiIcacaaIOaGaeq4UdW2aaSbaaSqaai aad2gaaeqaaOGaeyOeI0Iaeq4UdW2aaWbaaSqabeaacaaIQaaaaOGa aGykaiabgEGirlabeA8aQnaaBaaaleaacaWGTbaabeaakiaaiYcacq GHhis0caWGObWaaSbaaSqaaiaad6gaaeqaaOGaaGykaiaaiYhacqGH KjYOaaa@474E@

  λ m λ * Ω φ m Ω h n L (Ω) ε/2,    mM, n. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeyizImAeeuuDJXwAKbsr4rNCHbaceaGae8xjIa Laeq4UdW2aaSbaaSqaaiaad2gaaeqaaOGaeyOeI0Iaeq4UdW2aaWba aSqabeaacaaIQaaaaOGae8xjIa1aaSbaaSqaaiabfM6axbqabaGccq WFLicucqGHhis0cqaHgpGAdaWgaaWcbaGaamyBaaqabaGccqWFLicu daWgaaWcbaGaeuyQdCfabeaakiab=vIiqjabgEGirlaadIgadaWgaa WcbaGaamOBaaqabaGccqWFLicudaWgaaWcbaGaamitamaaCaaabeqa aiabg6HiLcaacaaIOaGaeuyQdCLaaGykaaqabaGccqGHKjYOcqaH1o qzcaaIVaGaaGOmaiaaiYcacaqGGaGaaeiiaiaabccacaqGGaGaamyB aiabgwMiZkaad2eacaaISaGaaeiiaiaad6gacqGHiiIZtuuDJXwAK1 uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab+vriojaai6caaaa@70EA@ (25)

Тогда из (23)–(25) вытекает, что

 λmλφm,h0 при mhT. (26)

В таком случае ( λ m φ m ,h)( λ * φ * ,h) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikaiabeU7aSnaaBaaaleaacaWGTbaabeaaki abgEGirlabeA8aQnaaBaaaleaacaWGTbaabeaakiaaiYcacqGHhis0 caWGObGaaGykaiabgkziUkaaiIcacqaH7oaBdaahaaWcbeqaaiaaiQ caaaGccqGHhis0cqaHgpGAdaahaaWcbeqaaiaaiQcaaaGccaaISaGa ey4bIeTaamiAaiaaiMcaaaa@4ABB@  при m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamyBaiabgkziUkabg6HiLcaa@35EE@  для всех hT. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamiAaiabgIGioprr1ngBPrwtHrhAXaqeguuDJX wAKbstHrhAG8KBLbaceaGae83eXtLae8ha37IaaiOlaaaa@41D1@  Отсюда с учетом (22) заключаем, что

  ( λ m φ m ,h)( λ * φ * ,h)ïðèmhT. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikaiabeU7aSnaaBaaaleaacaWGTbaabeaaki abgEGirlabeA8aQnaaBaaaleaacaWGTbaabeaakiaaiYcacqGHhis0 caWGObGaaGykaiabgkziUkaaiIcacqaH7oaBdaahaaWcbeqaaiaaiQ caaaGccqGHhis0cqaHgpGAdaahaaWcbeqaaiaaiQcaaaGccaaISaGa ey4bIeTaamiAaiaaiMcacaaMi8UaaGjbVlaab+oacaqGWdGaaei6ai aaysW7caaMi8UaamyBaiabgkziUkabg6HiLkaaysW7cqGHaiIicaWG ObGaeyicI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiq aacqWFtepvcaaIUaaaaa@6A83@ (27)

Для нелинейного слагаемого ( λ m α m φ m ,h) Γ N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikaiabeU7aSnaaBaaaleaacaWGTbaabeaaki abeg7aHnaaBaaaleaacaWGTbaabeaakiabeA8aQnaaBaaaleaacaWG TbaabeaakiaaiYcacaWGObGaaGykamaaBaaaleaacqqHtoWrdaWgaa qaaiaad6eaaeqaaaqabaaaaa@3FB6@  справедливо равенство

( λ m α m φ m ,h) Γ N ( λ * α * φ * ,h) Γ N = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikaiabeU7aSnaaBaaaleaacaWGTbaabeaaki abeg7aHnaaBaaaleaacaWGTbaabeaakiabeA8aQnaaBaaaleaacaWG TbaabeaakiaaiYcacaWGObGaaGykamaaBaaaleaacqqHtoWrdaWgaa qaaiaad6eaaeqaaaqabaGccqGHsislcaaIOaGaeq4UdW2aaWbaaSqa beaacaaIQaaaaOGaeqySde2aaWbaaSqabeaacaaIQaaaaOGaeqOXdO 2aaWbaaSqabeaacaaIQaaaaOGaaGilaiaadIgacaaIPaWaaSbaaSqa aiabfo5ahnaaBaaabaGaamOtaaqabaaabeaakiaai2daaaa@4EDF@

  =(( λ m λ * ) α m φ m ,h ) Γ N + ( λ * α m ( φ m φ * ),h) Γ N + ( λ * ( α m α * ) φ * ,h) Γ N . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGypaiaaiIcacaaIOaGaeq4UdW2aaSbaaSqaai aad2gaaeqaaOGaeyOeI0Iaeq4UdW2aaWbaaSqabeaacaaIQaaaaOGa aGykaiabeg7aHnaaBaaaleaacaWGTbaabeaakiabeA8aQnaaBaaale aacaWGTbaabeaakiaaiYcacaWGObGaaGykamaaBaaaleaacqqHtoWr daWgaaqaaiaad6eaaeqaaaqabaGccqGHRaWkcaaIOaGaeq4UdW2aaW baaSqabeaacaaIQaaaaOGaeqySde2aaSbaaSqaaiaad2gaaeqaaOGa aGikaiabeA8aQnaaBaaaleaacaWGTbaabeaakiabgkHiTiabeA8aQn aaCaaaleqabaGaaGOkaaaakiaaiMcacaaISaGaamiAaiaaiMcadaWg aaWcbaGaeu4KdC0aaSbaaeaacaWGobaabeaaaeqaaOGaey4kaSIaaG ikaiabeU7aSnaaCaaaleqabaGaaGOkaaaakiaaiIcacqaHXoqydaWg aaWcbaGaamyBaaqabaGccqGHsislcqaHXoqydaahaaWcbeqaaiaaiQ caaaGccaaIPaGaeqOXdO2aaWbaaSqabeaacaaIQaaaaOGaaGilaiaa dIgacaaIPaWaaSbaaSqaaiabfo5ahnaaBaaabaGaamOtaaqabaaabe aakiaai6caaaa@6D57@ (28)

Поскольку λ * φ * h L 2 ( Γ N ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeq4UdW2aaWbaaSqabeaacaaIQaaaaOGaeqOXdO 2aaWbaaSqabeaacaaIQaaaaOGaamiAaiabgIGiolaadYeadaahaaWc beqaaiaaikdaaaGccaaIOaGaeu4KdC0aaSbaaSqaaiaad6eaaeqaaO GaaGykaaaa@3EF0@ , то для третьего слагаемого в правой части (28) имеем

 αmα,λφhΓN0приmhT. (29)

Используя { h n } MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaG4EaiaadIgadaWgaaWcbaGaamOBaaqabaGcca aI9baaaa@35C0@ , для второго слагаемого получаем

  ( λ * α m ( φ m φ * ),h) Γ N =( λ * α m ( φ m φ * ), h n ) Γ N + ( λ * α m ( φ m φ * ),h h n ) Γ N m,nN. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikaiabeU7aSnaaCaaaleqabaGaaGOkaaaaki abeg7aHnaaBaaaleaacaWGTbaabeaakiaaiIcacqaHgpGAdaWgaaWc baGaamyBaaqabaGccqGHsislcqaHgpGAdaahaaWcbeqaaiaaiQcaaa GccaaIPaGaaGilaiaadIgacaaIPaWaaSbaaSqaaiabfo5ahnaaBaaa baGaamOtaaqabaaabeaakiaai2dacaaIOaGaeq4UdW2aaWbaaSqabe aacaaIQaaaaOGaeqySde2aaSbaaSqaaiaad2gaaeqaaOGaaGikaiab eA8aQnaaBaaaleaacaWGTbaabeaakiabgkHiTiabeA8aQnaaCaaale qabaGaaGOkaaaakiaaiMcacaaISaGaamiAamaaBaaaleaacaWGUbaa beaakiaaiMcadaWgaaWcbaGaeu4KdC0aaSbaaeaacaWGobaabeaaae qaaOGaey4kaSIaaGikaiabeU7aSnaaCaaaleqabaGaaGOkaaaakiab eg7aHnaaBaaaleaacaWGTbaabeaakiaaiIcacqaHgpGAdaWgaaWcba GaamyBaaqabaGccqGHsislcqaHgpGAdaahaaWcbeqaaiaaiQcaaaGc caaIPaGaaGilaiaadIgacqGHsislcaWGObWaaSbaaSqaaiaad6gaae qaaOGaaGykamaaBaaaleaacqqHtoWrdaWgaaqaaiaad6eaaeqaaaqa baGccaaMe8UaeyiaIiIaamyBaiaaiYcacaWGUbGaeyicI4SaamOtai aai6caaaa@7817@ (30)

В силу равномерной ограниченности по m величин α m Γ N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaqeeuuDJXwAKbsr4rNCHbaceaGae8xjIaLaeqySde 2aaSbaaSqaaiaad2gaaeqaaOGae8xjIa1aaSbaaSqaaiabfo5ahnaa BaaabaGaamOtaaqabaaabeaaaaa@3DC0@  и φ m φ * L 4 ( Γ N ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaqeeuuDJXwAKbsr4rNCHbaceaGae8xjIaLaeqOXdO 2aaSbaaSqaaiaad2gaaeqaaOGaeyOeI0IaeqOXdO2aaWbaaSqabeaa caaIQaaaaOGae8xjIa1aaSbaaSqaaiaadYeadaahaaqabeaacaaI0a aaaiaaiIcacqqHtoWrdaWgaaqaaiaad6eaaeqaaiaaiMcaaeqaaaaa @4489@ , существует такое число N=N(ε,h) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamOtaiaai2dacaWGobGaaGikaiabew7aLjaaiY cacaWGObGaaGykaaaa@38BA@ , с которым для второго слагаемого в (30) выполняется неравенство

|( λ * α m ( φ m φ * ),h h n ) Γ N | MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGiFaiaaiIcacqaH7oaBdaahaaWcbeqaaiaaiQ caaaGccqaHXoqydaWgaaWcbaGaamyBaaqabaGccaaIOaGaeqOXdO2a aSbaaSqaaiaad2gaaeqaaOGaeyOeI0IaeqOXdO2aaWbaaSqabeaaca aIQaaaaOGaaGykaiaaiYcacaWGObGaeyOeI0IaamiAamaaBaaaleaa caWGUbaabeaakiaaiMcadaWgaaWcbaGaeu4KdC0aaSbaaeaacaWGob aabeaaaeqaaOGaaGiFaiabgsMiJcaa@4B41@

  λ * L ( Γ N ) α m Γ N φ m φ * L 4 ( Γ N ) h n h L 4 ( Γ N ) ε/2,    nN, m. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeyizImAeeuuDJXwAKbsr4rNCHbaceaGae8xjIa Laeq4UdW2aaWbaaSqabeaacaaIQaaaaOGae8xjIa1aaSbaaSqaaiaa dYeadaahaaqabeaacqGHEisPaaGaaGikaabaaaaaaaaapeGaeu4KdC 0damaaBaaameaapeGaamOtaaWdaeqaaSGaaGykaaqabaGccqWFLicu cqaHXoqydaWgaaWcbaGaamyBaaqabaGccqWFLicudaWgaaWcbaGaeu 4KdC0aaSbaaeaacaWGobaabeaaaeqaaOGae8xjIaLaeqOXdO2aaSba aSqaaiaad2gaaeqaaOGaeyOeI0IaeqOXdO2aaWbaaSqabeaacaaIQa aaaOGae8xjIa1aaSbaaSqaaiaadYeadaahaaqabeaacaaI0aaaaiaa iIcacqqHtoWrdaWgaaqaaiaad6eaaeqaaiaaiMcaaeqaaOGae8xjIa LaamiAamaaBaaaleaacaWGUbaabeaakiabgkHiTiaadIgacqWFLicu daWgaaWcbaGaamitamaaCaaabeqaaiaaisdaaaGaaGikaiabfo5ahn aaBaaabaGaamOtaaqabaGaaGykaaqabaGccqGHKjYOcqaH1oqzcaaI VaGaaGOmaiaaiYcacaqGGaGaaeiiaiaabccacaqGGaGaamOBaiabgw MiZkaad6eacaaISaGaaeiiaiaad2gacqGHiiIZtuuDJXwAK1uy0HMm aeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab+vriojaai6caaaa@8011@ (31)

В силу равномерной ограниченности по m и n соответственно величин α m L 2 ( Γ N ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaqeeuuDJXwAKbsr4rNCHbaceaGae8xjIaLaeqySde 2aaSbaaSqaaiaad2gaaeqaaOGae8xjIa1aaSbaaSqaaiaadYeadaah aaqabeaacaaIYaaaaiaaiIcacqqHtoWrdaWgaaqaaiaad6eaaeqaai aaiMcaaeqaaaaa@40D4@  и h n L 6 ( Γ N ) , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaqeeuuDJXwAKbsr4rNCHbaceaGae8xjIaLaamiAam aaBaaaleaacaWGUbaabeaakiab=vIiqnaaBaaaleaaqaaaaaaaaaWd biaadYeapaWaaWbaaWqabeaapeGaaGOnaaaaliaacIcacqqHtoWrpa WaaSbaaWqaa8qacaWGobaapaqabaWcpeGaaiykaaWdaeqaaOGaaiil aaaa@418F@  существует число M=M(ε,h) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamytaiaai2dacaWGnbGaaGikaiabew7aLjaaiY cacaWGObGaaGykaaaa@38B8@ , с которым первое слагаемое в (30) удовлетворяет неравенству

  |( λ * α m ( φ m φ * ), h n ) Γ N | λ * L ( Γ N ) α m Γ N φ m φ * L 3 ( Γ N ) h n L 6 ( Γ N ) ε/2, mM, n. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGiFaiaaiIcacqaH7oaBdaahaaWcbeqaaiaaiQ caaaGccqaHXoqydaWgaaWcbaGaamyBaaqabaGccaaIOaGaeqOXdO2a aSbaaSqaaiaad2gaaeqaaOGaeyOeI0IaeqOXdO2aaWbaaSqabeaaca aIQaaaaOGaaGykaiaaiYcacaWGObWaaSbaaSqaaiaad6gaaeqaaOGa aGykamaaBaaaleaacqqHtoWrdaWgaaqaaiaad6eaaeqaaaqabaGcca aI8bGaeyizImAeeuuDJXwAKbsr4rNCHbaceaGae8xjIaLaeq4UdW2a aWbaaSqabeaacaaIQaaaaOGae8xjIa1aaSbaaSqaaiaadYeadaahaa qabeaacqGHEisPaaGaaGikaabaaaaaaaaapeGaeu4KdC0damaaBaaa meaapeGaamOtaaWdaeqaaSGaaGykaaqabaGccqWFLicucqaHXoqyda WgaaWcbaGaamyBaaqabaGccqWFLicudaWgaaWcbaGaeu4KdC0aaSba aeaacaWGobaabeaaaeqaaOGae8xjIaLaeqOXdO2aaSbaaSqaaiaad2 gaaeqaaOGaeyOeI0IaeqOXdO2aaWbaaSqabeaacaaIQaaaaOGae8xj Ia1aaSbaaSqaaiaadYeadaahaaqabeaacaaIZaaaaiaaiIcacqqHto WrdaWgaaqaaiaad6eaaeqaaiaaiMcaaeqaaOGae8xjIaLaamiAamaa BaaaleaacaWGUbaabeaakiab=vIiqnaaBaaaleaacaWGmbWaaWbaae qabaGaaGOnaaaacaaIOaGaeu4KdC0aaSbaaeaacaWGobaabeaacaaI PaaabeaakiabgsMiJkabew7aLjaai+cacaaIYaGaaGilaiaabccaca WGTbGaeyyzImRaamytaiaaiYcacaqGGaGaamOBaiabgIGioprr1ngB PrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae4xfH4KaaGOlaa aa@9262@ (32)

Тогда из (31) и (32) вытекает, что

 λαmφmφhΓN0 при mhT. (33)

Аналогично для первого слагаемого в (28) справедливо равенство

  (( λ m λ * ) α m φ m ,h) Γ N =(( λ m λ * ) α m φ m , h n ) Γ N + (( λ m λ * ) α m φ m ,h h n ) Γ N . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikaiaaiIcacqaH7oaBdaWgaaWcbaGaamyBaa qabaGccqGHsislcqaH7oaBdaahaaWcbeqaaiaaiQcaaaGccaaIPaGa eqySde2aaSbaaSqaaiaad2gaaeqaaOGaeqOXdO2aaSbaaSqaaiaad2 gaaeqaaOGaaGilaiaadIgacaaIPaWaaSbaaSqaaiabfo5ahnaaBaaa baGaamOtaaqabaaabeaakiaai2dacaaIOaGaaGikaiabeU7aSnaaBa aaleaacaWGTbaabeaakiabgkHiTiabeU7aSnaaCaaaleqabaGaaGOk aaaakiaaiMcacqaHXoqydaWgaaWcbaGaamyBaaqabaGccqaHgpGAda WgaaWcbaGaamyBaaqabaGccaaISaGaamiAamaaBaaaleaacaWGUbaa beaakiaaiMcadaWgaaWcbaGaeu4KdC0aaSbaaeaacaWGobaabeaaae qaaOGaey4kaSIaaGikaiaaiIcacqaH7oaBdaWgaaWcbaGaamyBaaqa baGccqGHsislcqaH7oaBdaahaaWcbeqaaiaaiQcaaaGccaaIPaGaeq ySde2aaSbaaSqaaiaad2gaaeqaaOGaeqOXdO2aaSbaaSqaaiaad2ga aeqaaOGaaGilaiaadIgacqGHsislcaWGObWaaSbaaSqaaiaad6gaae qaaOGaaGykamaaBaaaleaacqqHtoWrdaWgaaqaaiaad6eaaeqaaaqa baGccaaIUaaaaa@7164@ (34)

В силу равномерной ограниченности по m и n соответственно величин α m L 2 ( Γ N ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaqeeuuDJXwAKbsr4rNCHbaceaGae8xjIaLaeqySde 2aaSbaaSqaaiaad2gaaeqaaOGae8xjIa1aaSbaaSqaaiaadYeadaah aaqabeaacaaIYaaaaiaaiIcacqqHtoWrdaWgaaqaaiaad6eaaeqaai aaiMcaaeqaaaaa@40D4@  и h n L ( Γ N ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaqeeuuDJXwAKbsr4rNCHbaceaGae8xjIaLaamiAam aaBaaaleaacaWGUbaabeaakiab=vIiqnaaBaaaleaacaWGmbWaaWba aeqabaGaeyOhIukaaiaaiIcacqqHtoWrdaWgaaqaaiaad6eaaeqaai aaiMcaaeqaaaaa@40D8@ , существует число M=M(ε,h) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamytaiaai2dacaWGnbGaaGikaiabew7aLjaaiY cacaWGObGaaGykaaaa@38B8@ , с которым первое слагаемое в (34) удовлетворяет неравенству

|(( λ m λ * ) α m φ m , h n ) Γ N | MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGiFaiaaiIcacaaIOaGaeq4UdW2aaSbaaSqaai aad2gaaeqaaOGaeyOeI0Iaeq4UdW2aaWbaaSqabeaacaaIQaaaaOGa aGykaiabeg7aHnaaBaaaleaacaWGTbaabeaakiabeA8aQnaaBaaale aacaWGTbaabeaakiaaiYcacaWGObWaaSbaaSqaaiaad6gaaeqaaOGa aGykamaaBaaaleaacqqHtoWrdaWgaaqaaiaad6eaaeqaaaqabaGcca aI8bGaeyizImkaaa@499B@

  λ m λ * L 4 ( Γ N ) α m Γ N φ m L 4 ( Γ N ) h n L ( Γ N ) ε/2, mM, n. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeyizImAeeuuDJXwAKbsr4rNCHbaceaGae8xjIa Laeq4UdW2aaSbaaSqaaiaad2gaaeqaaOGaeyOeI0Iaeq4UdW2aaWba aSqabeaacaaIQaaaaOGae8xjIa1aaSbaaSqaaiaadYeadaahaaqabe aacaaI0aaaaiaaiIcacqqHtoWrdaWgaaqaaiaad6eaaeqaaiaaiMca aeqaaOGae8xjIaLaeqySde2aaSbaaSqaaiaad2gaaeqaaOGae8xjIa 1aaSbaaSqaaiabfo5ahnaaBaaabaGaamOtaaqabaaabeaakiab=vIi qjabeA8aQnaaBaaaleaacaWGTbaabeaakiab=vIiqnaaBaaaleaaca WGmbWaaWbaaeqabaGaaGinaaaacaaIOaGaeu4KdC0aaSbaaeaacaWG obaabeaacaaIPaaabeaakiab=vIiqjaadIgadaWgaaWcbaGaamOBaa qabaGccqWFLicudaWgaaWcbaGaamitamaaCaaabeqaaiabg6HiLcaa caaIOaGaeu4KdC0aaSbaaeaacaWGobaabeaacaaIPaaabeaakiabgs MiJkabew7aLjaai+cacaaIYaGaaGilaiaabccacaWGTbGaeyyzImRa amytaiaaiYcacaqGGaGaamOBaiabgIGioprr1ngBPrwtHrhAYaqegu uDJXwAKbstHrhAGq1DVbacfaGae4xfH4KaaGOlaaaa@7C1C@ (35)

В силу равномерной ограниченности по m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamyBaaaa@3290@  и n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamOBaaaa@3291@  соответственно величин

λ m λ * L ( Γ N ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaqeeuuDJXwAKbsr4rNCHbaceaGae8xjIaLaeq4UdW 2aaSbaaSqaaiaad2gaaeqaaOGaeyOeI0Iaeq4UdW2aaWbaaSqabeaa caaIQaaaaOGae8xjIa1aaSbaaSqaaiaadYeadaahaaqabeaacqGHEi sPaaGaaGikaiabfo5ahnaaBaaabaGaamOtaaqabaGaaGykaaqabaaa aa@452A@ , α m L 2 ( Γ N ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaqeeuuDJXwAKbsr4rNCHbaceaGae8xjIaLaeqySde 2aaSbaaSqaaiaad2gaaeqaaOGae8xjIa1aaSbaaSqaaiaadYeadaah aaqabeaacaaIYaaaaiaaiIcacqqHtoWrdaWgaaqaaiaad6eaaeqaai aaiMcaaeqaaaaa@40D4@  и φ m L 4 ( Γ N ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaqeeuuDJXwAKbsr4rNCHbaceaGae8xjIaLaeqOXdO 2aaSbaaSqaaiaad2gaaeqaaOGae8xjIa1aaSbaaSqaaiaadYeadaah aaqabeaacaaI0aaaaiaaiIcacqqHtoWrdaWgaaqaaiaad6eaaeqaai aaiMcaaeqaaaaa@40F4@ , существует число N=N(ε,h) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamOtaiaai2dacaWGobGaaGikaiabew7aLjaaiY cacaWGObGaaGykaaaa@38BA@ , с которым первое слагаемое в (34) удовлетворяет неравенству

|(( λ m λ * ) α m φ m ,h ) Γ N | MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGiFaiaaiIcacaaIOaGaeq4UdW2aaSbaaSqaai aad2gaaeqaaOGaeyOeI0Iaeq4UdW2aaWbaaSqabeaacaaIQaaaaOGa aGykaiabeg7aHnaaBaaaleaacaWGTbaabeaakiabeA8aQnaaBaaale aacaWGTbaabeaakiaaiYcacaWGObGaaGykamaaBaaaleaacqqHtoWr daWgaaqaaiaad6eaaeqaaaqabaGccaaI8bGaeyizImkaaa@4872@

  λ m λ * L ( Γ N ) α m Γ N φ m L 4 ( Γ N ) h h n L 4 ( Γ N ) ε/2, mN, m. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeyizImAeeuuDJXwAKbsr4rNCHbaceaGae8xjIa Laeq4UdW2aaSbaaSqaaiaad2gaaeqaaOGaeyOeI0Iaeq4UdW2aaWba aSqabeaacaaIQaaaaOGae8xjIa1aaSbaaSqaaiaadYeadaahaaqabe aacqGHEisPaaGaaGikaiabfo5ahnaaBaaabaGaamOtaaqabaGaaGyk aaqabaGccqWFLicucqaHXoqydaWgaaWcbaGaamyBaaqabaGccqWFLi cudaWgaaWcbaGaeu4KdC0aaSbaaeaacaWGobaabeaaaeqaaOGae8xj IaLaeqOXdO2aaSbaaSqaaiaad2gaaeqaaOGae8xjIa1aaSbaaSqaai aadYeadaahaaqabeaacaaI0aaaaiaaiIcacqqHtoWrdaWgaaqaaiaa d6eaaeqaaiaaiMcaaeqaaOGae8xjIaLaamiAaiabgkHiTiaadIgada WgaaWcbaGaamOBaaqabaGccqWFLicudaWgaaWcbaGaamitamaaCaaa beqaaiaaisdaaaGaaGikaiabfo5ahnaaBaaabaGaamOtaaqabaGaaG ykaaqabaGccqGHKjYOcqaH1oqzcaaIVaGaaGOmaiaaiYcacaqGGaGa amyBaiabgwMiZkaad6eacaaISaGaaeiiaiaad2gacqGHiiIZtuuDJX wAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab+vriojaai6ca aaa@7DF6@ (36)

Из (35) и (36) вытекает, что

  |( λ m α m φ m ,h ) Γ N ( λ * α m φ m ,h) Γ N |0ïðèmhT. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGiFaiaaiIcacqaH7oaBdaWgaaWcbaGaamyBaa qabaGccqaHXoqydaWgaaWcbaGaamyBaaqabaGccqaHgpGAdaWgaaWc baGaamyBaaqabaGccaaISaGaamiAaiaaiMcadaWgaaWcbaGaeu4KdC 0aaSbaaeaacaWGobaabeaaaeqaaOGaeyOeI0IaaGikaiabeU7aSnaa CaaaleqabaGaaGOkaaaakiabeg7aHnaaBaaaleaacaWGTbaabeaaki abeA8aQnaaBaaaleaacaWGTbaabeaakiaaiYcacaWGObGaaGykamaa BaaaleaacqqHtoWrdaWgaaqaaiaad6eaaeqaaaqabaGccaaI8bGaey OKH4QaaGimaiaayIW7caaMe8Uaae47aiaabcpacaqGOdGaaGjbVlaa yIW7caWGTbGaeyOKH4QaeyOhIuQaaGjbVlabgcGiIiaadIgacqGHii IZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGabaiab=nr8 ujaai6caaaa@730D@ (37)

В таком случае из (29), (33) и (37) заключаем, что

λmαmφm,hΓNλαφ,hΓN0приmhT.

Поскольку функционал J слабополунепрерывен снизу на H 1 (Ω)×K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamisamaaCaaaleqabaGaaGymaaaakiaaiIcacq qHPoWvcaaIPaGaey41aqRaam4saaaa@3937@ , тогда из (17) следует, что J( φ * , u * )= J * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamOsaiaaiIcacqaHgpGAdaahaaWcbeqaaiaaiQ caaaGccaaISaGaamyDamaaCaaaleqabaGaaGOkaaaakiaaiMcacaaI 9aGaamOsamaaCaaaleqabaGaaGOkaaaaaaa@3B8C@ . Теорема доказана.

Замечание 3.1. Отметим, что требования на гладкость λ уменьшены по сравнению с [26], но остаются высокими, поскольку управления λ и α мультипликативно входят в граничное условие на Γ N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeu4KdC0aaSbaaSqaaiaad6eaaeqaaaaa@3405@ . Для сравнения при условии Дирихле можно ограничиться тем, что λ H s (Ω) L (Ω) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeq4UdWMaeyicI4SaamisamaaCaaaleqabaGaam 4CaaaakiaaiIcacqqHPoWvcaaIPaGaeyykICSaamitamaaCaaaleqa baGaeyOhIukaaOGaaGikaiabfM6axjaaiMcaaaa@40CF@ , s>1/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaam4Caiaai6dacaaIXaGaaG4laiaaikdaaaa@358E@  (см. [34]).

Замечание 3.2. Ясно, что все функционалы качества из (16) удовлетворяют условиям теоремы 3.1.

4. Система оптимальности и принцип bang–bang

В этом разделе и далее будем считать, что k=æ φ 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaam4Aaiaai2dacaa5MdGaaGjcVlabeA8aQnaaCa aaleqabaGaaGinaaaaaaa@395A@ , где æ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaqU5aaaa@336A@  — размерный параметр. Через Y * =T× H 1/2 ( Γ D ) * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamywamaaCaaaleqabaGaaGOkaaaakiaai2datu uDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGabaiab=nr8ujab gEna0kaadIeadaahaaWcbeqaaiaaigdacaaIVaGaaGOmaaaakiaaiI cacqqHtoWrdaWgaaWcbaGaamiraaqabaGccaaIPaWaaWbaaSqabeaa caaIQaaaaaaa@498C@  обозначим двойственное пространство к пространству Y, введенному в разд. 3.

Легко показать, что производная Фреше оператора F: H 1 (Ω)×KY MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamOraiaaiQdacaWGibWaaWbaaSqabeaacaaIXa aaaOGaaGikaiabfM6axjaaiMcacqGHxdaTcaWGlbGaeyOKH4Qaamyw aaaa@3D91@  по φ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqOXdOgaaa@335B@  в каждой точке ( φ ^ , u ^ )=( φ ^ , λ ^ , α ^ , f ^ ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikamaaxacabaGaeqOXdOgaleqabaGaiaiGaa aQaiOxaaaakiaaiYcadaWfGaqaaiaadwhaaSqabeaacGaGacaaOcGG EbaaaOGaaGykaiaai2dacaaIOaWaaCbiaeaacqaHgpGAaSqabeaacG aGacaaOcGGEbaaaOGaaGilamaaxacabaGaeq4UdWgaleqabaGaiaiG aaaQaiOxaaaakiaaiYcadaWfGaqaaiabeg7aHbWcbeqaaiacaciaaG kac6faaaGccaaISaWaaCbiaeaacaWGMbaaleqabaGaiaiGaaaQaiOx aaaakiaaiMcaaaa@5217@  является линейным непрерывным оператором F φ ( φ ^ , u ^ ):XY, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGabmOrayaafaWaaSbaaSqaaiabeA8aQbqabaGcca aIOaWaaCbiaeaacqaHgpGAaSqabeaacGaGacaaOcGGEbaaaOGaaGil amaaxacabaGaamyDaaWcbeqaaiacaciaaGkac6faaaGccaaIPaGaaG OoaiaadIfacqGHsgIRcaWGzbGaaiilaaaa@4420@  отображающим каждый элемент τX MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqiXdqNaeyicI4Saamiwaaaa@35C4@  в элемент F φ ( φ ^ , u ^ )τ=( y ^ 1 , y ^ 2 )Y. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGabmOrayaafaWaaSbaaSqaaiabeA8aQbqabaGcca aIOaWaaCbiaeaacqaHgpGAaSqabeaacGaGacaaOcGGEbaaaOGaaGil amaaxacabaGaamyDaaWcbeqaaiacaciaaGkac6faaaGccaaIPaGaeq iXdqNaaGypaiaaiIcadaWfGaqaaiaadMhaaSqabeaacGaGacaaOcGG EbaaaOWaaSbaaSqaaiaaigdaaeqaaOGaaGilamaaxacabaGaamyEaa WcbeqaaiacaciaaGkac6faaaGcdaWgaaWcbaGaaGOmaaqabaGccaaI PaGaeyicI4Saamywaiaac6caaaa@5068@

Здесь элементы y ^ 1 T * , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaWaaCbiaeaacaWG5baaleqabaGaiaiGaaaQaiOxaa aakmaaBaaaleaacaaIXaaabeaakiabgIGioprr1ngBPrwtHrhAXaqe guuDJXwAKbstHrhAG8KBLbaceaGae83eXt1aaWbaaSqabeaacaaIQa aaaOGaaiilaaaa@44F7@   y ^ 2 H 1/2 ( Γ D ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaWaaCbiaeaacaWG5baaleqabaGaiaiGaaaQaiOxaa aakmaaBaaaleaacaaIYaaabeaakiabgIGiolaadIeadaahaaWcbeqa aiaaigdacaaIVaGaaGOmaaaakiaaiIcacqqHtoWrdaWgaaWcbaGaam iraaqabaGccaaIPaaaaa@3EF7@  определяются следующими соотношениями:

  y ^ 1 ,τ=( λ ^ τ,h)+5æ( φ ^ 4 τ,h)+ ( λ ^ α ^ τ,h) Γ N hT, y ^ 2 =τ | Γ D . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeyykJe+aaCbiaeaacaWG5baaleqabaGaiaiGaa aQaiOxaaaakmaaBaaaleaacaaIXaaabeaakiaaiYcacqaHepaDcqGH Qms8caaI9aGaaGikamaaxacabaGaeq4UdWgaleqabaGaiaiGaaaQai OxaaaakiabgEGirlabes8a0jaaiYcacqGHhis0caWGObGaaGykaiab gUcaRiaaiwdacaa5MdGaaGikamaaxacabaGaeqOXdOgaleqabaGaia iGaaaQaiOxaaaakmacaciaaGqaCaaaleqcaciaaGqabGaGacaaieGa iaiGaaacbGinaaaakiabes8a0jaaiYcacaWGObGaaGykaiabgUcaRi aaiIcadaWfGaqaaiabeU7aSbWcbeqaaiacaciaaGkac6faaaGcdaWf Gaqaaiabeg7aHbWcbeqaaiacaciaaGkac6faaaGccqaHepaDcaaISa GaamiAaiaaiMcadaWgaaWcbaGaeu4KdC0aaSbaaeaacaWGobaabeaa aeqaaOGaaGjbVlaaysW7cqGHaiIicaWGObGaeyicI48efv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiqaacqWFtepvcaaISaGaaGjb VpaaxacabaGaamyEaaWcbeqaaiacaciaaGkac6faaaGcdaWgaaWcba GaaGOmaaqabaGccaaI9aGaeqiXdqNaaGiFamaaBaaaleaacqqHtoWr daWgaaqaaiaadseaaeqaaaqabaGccGafakOlaaaa@8D5D@ (38)

Через F φ ( φ ^ , u ^ ) * : Y * H 1 (Ω) * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGabmOrayaafaWaaSbaaSqaaiabeA8aQbqabaGcca aIOaWaaCbiaeaacqaHgpGAaSqabeaacGaGacaaOcGGEbaaaOGaaGil amaaxacabaGaamyDaaWcbeqaaiacaciaaGkac6faaaGccaaIPaWaaW baaSqabeaacaaIQaaaaOGaaGOoaiaadMfadaahaaWcbeqaaiaaiQca aaGccqGHsgIRcaWGibWaaWbaaSqabeaacaaIXaaaaOGaaGikaiabfM 6axjaaiMcadaahaaWcbeqaaiaaiQcaaaaaaa@49FC@  обозначим оператор, сопряженный с оператором F φ ( φ ^ , u ^ ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGabmOrayaafaWaaSbaaSqaaiabeA8aQbqabaGcca aIOaWaaCbiaeaacqaHgpGAaSqabeaacGaGacaaOcGGEbaaaOGaaGil amaaxacabaGaamyDaaWcbeqaaiacaciaaGkac6faaaGccaaIPaGaai Olaaaa@3FB6@

В соответствии с общей теорией гладковыпуклых экстремальных задач (см. [35]) введем элемент y * =(θ,ζ) Y * =T× H 1/2 ( Γ D ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamyEamaaCaaaleqabaGaaGOkaaaakiaai2daca aIOaGaeqiUdeNaaGilaiabeA7a6jaaiMcacqGHiiIZcaWGzbWaaWba aSqabeaacaaIQaaaaOGaaGypaiaadsfacqGHxdaTcaWGibWaaWbaaS qabeaacqGHsislcaaIXaGaaG4laiaaikdaaaGccaaIOaGaeu4KdC0a aSbaaSqaaiaadseaaeqaaOGaaGykaaaa@48CD@ , на который будем ссылаться как на сопряженное состояние, и определим Лагранжиан L: H 1 (Ω)×K× Y * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUv gaiqaacqWFsectcaaI6aGaamisamaaCaaaleqabaGaaGymaaaakiaa iIcacqqHPoWvcaaIPaGaey41aqRaam4saiabgEna0kaadMfadaahaa WcbeqaaiaaiQcaaaGccqGHsgIRtuuDJXwAK1uy0HMmaeXbfv3ySLgz G0uy0HgiuD3BaGqbbiab+1risbaa@550E@  по формуле

L(φ,u, y * )=J(φ,u)+ y * ,F(φ,u) Y * ×Y J(φ,u)+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUv gaiqaacqWFsectcaaIOaGaeqOXdOMaaGilaiaadwhacaaISaGaamyE amaaCaaaleqabaGaaGOkaaaakiaaiMcacaaI9aGaamOsaiaaiIcacq aHgpGAcaaISaGaamyDaiaaiMcacqGHRaWkcqGHPms4caWG5bWaaWba aSqabeaacaaIQaaaaOGaaGilaiaadAeacaaIOaGaeqOXdOMaaGilai aadwhacaaIPaGaeyOkJe=aaSbaaSqaaiaadMfadaahaaqabeaacaaI QaaaaiabgEna0kaadMfaaeqaaOGaeyyyIORaamOsaiaaiIcacqaHgp GAcaaISaGaamyDaiaaiMcacqGHRaWkaaa@63D0@

  + F 1 (φ,u),θ T * ×T + ζ, F 2 (φ) 1/2, Γ D . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaey4kaSIaeyykJeUaamOramaaBaaaleaacaaIXa aabeaakiaaiIcacqaHgpGAcaaISaGaamyDaiaaiMcacaaISaGaeqiU deNaeyOkJe=aaSbaaSqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHr hAG8KBLbaceaGae83eXt1aaWbaaeqabaGaaGOkaaaacqGHxdaTcaaM c8Uae83eXtfabeaakiabgUcaRiabgMYiHlabeA7a6jaaiYcacaWGgb WaaSbaaSqaaiaaikdaaeqaaOGaaGikaiabeA8aQjaaiMcacqGHQms8 daWgaaWcbaGaaGymaiaai+cacaaIYaGaaGilaiabfo5ahnaaBaaaba Gaamiraaqabaaabeaakiaai6caaaa@62CB@ (39)

Из лемм 2.1, 2.2 и теоремы Лакса–Мильграма вытекает, что для любой пары ( f 0 , ψ 0 ) T * × H 1/2 ( Γ D ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikaiaadAgadaWgaaWcbaGaaGimaaqabaGcca aISaGaeqiYdK3aaSbaaSqaaiaaicdaaeqaaOGaaGykaiabgIGiolaa dsfadaahaaWcbeqaaiaaiQcaaaGccqGHxdaTcaWGibWaaWbaaSqabe aacaaIXaGaaG4laiaaikdaaaGccaaIOaGaeu4KdC0aaSbaaSqaaiaa dseaaeqaaOGaaGykaaaa@44B1@  существует единственное решение τ H 1 (Ω) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqiXdqNaeyicI4SaamisamaaCaaaleqabaGaaG ymaaaakiaaiIcacqqHPoWvcaaIPaaaaa@3999@  линейной задачи

  ( λ ^ τ,h)+5æ( φ ^ 4 τ,h)+ ( λ ^ α ^ τ,h) Γ N = f 0 ,h T * ×T hT,τ | Γ D = ψ 0 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikamaaHaaabaGaeq4UdWgacaGLcmaacqGHhi s0cqaHepaDcaaISaGaey4bIeTaamiAaiaaiMcacqGHRaWkcaaI1aGa aqU5aiaaiIcadaqiaaqaaiabeA8aQbGaayPadaWaaWbaaSqabeaaca aI0aaaaOGaeqiXdqNaaGilaiaadIgacaaIPaGaey4kaSIaaGikamaa HaaabaGaeq4UdWgacaGLcmaadaqiaaqaaiabeg7aHbGaayPadaGaaG jcVlabes8a0jaaiYcacaWGObGaaGykamaaBaaaleaacqqHtoWrdaWg aaqaaiaad6eaaeqaaaqabaGccaaI9aGaeyykJeUaamOzamaaBaaale aacaaIWaaabeaakiaaiYcacaWGObGaeyOkJe=aaSbaaSqaamrr1ngB PrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaGae83eXt1aaWbaae qabaGaaGOkaaaacqGHxdaTcqWFtepvaeqaaOGaaGjbVlaaysW7cqGH aiIicaWGObGaeyicI4Sae83eXtLaaGilaiaaysW7caaMe8UaeqiXdq NaaGiFamaaBaaaleaacqqHtoWrdaWgaaqaaiaadseaaeqaaaqabaGc caaI9aGaeqiYdK3aaSbaaSqaaiaaicdaaeqaaOGaaGOlaaaa@840A@ (40)

Тогда оператор F φ ( φ ^ , u ^ ):XY MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGabmOrayaafaWaaSbaaSqaaiabeA8aQbqabaGcca aIOaWaaecaaeaacqaHgpGAaiaawkWaaiaaiYcadaqiaaqaaiaadwha aiaawkWaaiaaiMcacaaI6aGaamiwaiabgkziUkaadMfaaaa@3F2A@  — изоморфизм, а из гл. 6 [33] вытекает следующая теорема.

Теорема 4.1. Пусть выполняются условия (i), (ii) и (j)–(jjj), при этом k=æ φ 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaam4Aaiaai2dacaa5MdGaaGjcVlabeA8aQnaaCa aaleqabaGaaGinaaaaaaa@395A@  и элемент ( φ ^ , u ^ ) H 1 (Ω)×K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikamaaHaaabaGaeqOXdOgacaGLcmaacaaISa WaaecaaeaacaWG1baacaGLcmaacaaIPaGaeyicI4SaamisamaaCaaa leqabaGaaGymaaaakiaaiIcacqqHPoWvcaaIPaGaey41aqRaam4saa aa@4111@  является локальным минимумом задачи (15). Предположим также, что функционал качества I: H 1 (Ω) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamysaiaaiQdacaWGibWaaWbaaSqabeaacaaIXa aaaOGaaGikaiabfM6axjaaiMcacqGHsgIRtuuDJXwAK1uy0HMmaeHb fv3ySLgzG0uy0HgiuD3BaGabbiab=1risbaa@4487@  непрерывно дифференцируем по Фреше по состоянию φ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaqcLbvaqa aaaaaaaaWdbiab=z8aQbaa@3899@  в точке φ ^ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaHaaabaGaeq OXdOgacaGLcmaaaaa@3B04@ . Тогда

1) существует ненулевой множитель Лагранжа y * =(θ,ζ) Y * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamyEamaaCaaaleqabaGaaGOkaaaakiaai2daca aIOaGaeqiUdeNaaGilaiabeA7a6jaaiMcacqGHiiIZcaWGzbWaaWba aSqabeaacaaIQaaaaaaa@3D1F@  такой, что имеет место уравнение Эйлера–Лагранжа F φ ( φ ^ , u ^ ) * y * = J φ ( φ ^ , u ^ )â H 1 (Ω) * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGabmOrayaafaWaaSbaaSqaaiabeA8aQbqabaGcca aIOaWaaecaaeaacqaHgpGAaiaawkWaaiaaiYcadaqiaaqaaiaadwha aiaawkWaaiaaiMcadaahaaWcbeqaaiaaiQcaaaGccaWG5bWaaWbaaS qabeaacaaIQaaaaOGaaGypaiabgkHiTiqadQeagaqbamaaBaaaleaa cqaHgpGAaeqaaOGaaGikamaaHaaabaGaeqOXdOgacaGLcmaacaaISa WaaecaaeaacaWG1baacaGLcmaacaaIPaGaaGjcVlaaysW7caa5IdGa aGjbVlaayIW7caWGibWaaWbaaSqabeaacaaIXaaaaOGaaGikaiabfM 6axjaaiMcadaahaaWcbeqaaiaaiQcaaaaaaa@5601@  в F φ ( φ ^ , u ^ ) * y * = J φ ( φ ^ , u ^ )â H 1 (Ω) * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGabmOrayaafaWaaSbaaSqaaiabeA8aQbqabaGcca aIOaWaaecaaeaacqaHgpGAaiaawkWaaiaaiYcadaqiaaqaaiaadwha aiaawkWaaiaaiMcadaahaaWcbeqaaiaaiQcaaaGccaWG5bWaaWbaaS qabeaacaaIQaaaaOGaaGypaiabgkHiTiqadQeagaqbamaaBaaaleaa cqaHgpGAaeqaaOGaaGikamaaHaaabaGaeqOXdOgacaGLcmaacaaISa WaaecaaeaacaWG1baacaGLcmaacaaIPaGaaGjcVlaaysW7caa5IdGa aGjbVlaayIW7caWGibWaaWbaaSqabeaacaaIXaaaaOGaaGikaiabfM 6axjaaiMcadaahaaWcbeqaaiaaiQcaaaaaaa@5601@ , эквивалентное соотношению

  ( λ ^ τ,θ)+5æ( φ ^ 4 τ,θ)+ ( λ ^ α ^ τ,θ) Γ N + ζ,τ 1/2, Γ D =( μ 0 /2) I φ ( φ ^ ),ττ H 1 (Ω), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiIcadaqiaa qaaiabeU7aSbGaayPadaGaey4bIeTaeqiXdqNaaGilaiabgEGirlab eI7aXjaaiMcacqGHRaWkcaaI1aGaaqU5aiaaiIcadaqiaaqaaiabeA 8aQbGaayPadaWaaWbaaSqabeaacaaI0aaaaOGaeqiXdqNaaGilaiab eI7aXjaaiMcacqGHRaWkcaaIOaWaaecaaeaacqaH7oaBaiaawkWaam aaHaaabaGaeqySdegacaGLcmaacqaHepaDcaaISaGaeqiUdeNaaGyk amaaBaaaleaacqqHtoWrdaWgaaqaaiaad6eaaeqaaaqabaGccqGHRa WkcqGHPms4cqaH2oGEcaaISaGaeqiXdqNaeyOkJe=aaSbaaSqaaiaa igdacaaIVaGaaGOmaiaaiYcacqqHtoWrdaWgaaqaaiaadseaaeqaaa qabaGccaaI9aGaeyOeI0IaaGikaiabeY7aTnaaBaaaleaacaaIWaaa beaakiaai+cacaaIYaGaaGykaiabgMYiHlqadMeagaqbamaaBaaale aacqaHgpGAaeqaaOGaaGikamaaHaaabaGaeqOXdOgacaGLcmaacaaI PaGaaGilaiabes8a0jabgQYiXlaaysW7cqGHaiIicqaHepaDcqGHii IZcaWGibWaaWbaaSqabeaacaaIXaaaaOGaaGikaiabfM6axjaaiMca caaISaaaaa@8AF1@ (41)

2) выполняется принцип минимума L( φ ^ , u ^ , y * )L( φ ^ ,u, y * ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadYeacaaIOa WaaecaaeaacqaHgpGAaiaawkWaaiaaiYcadaqiaaqaaiaadwhaaiaa wkWaaiaaiYcacaWG5bWaaWbaaSqabeaacaaIQaaaaOGaaGykaiabgs MiJkaadYeacaaIOaWaaecaaeaacqaHgpGAaiaawkWaaiaaiYcacaWG 1bGaaGilaiaadMhadaahaaWcbeqaaiaaiQcaaaGccaaIPaaaaa@4D04@   uK MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeyiaIiIaamyDaiabgIGiolaadUeaaaa@35BC@ , эквивалентный неравенствам

  μ 1 ( λ ^ ,λ λ ^ ) s,Ω +((λ λ ^ ) φ ^ ,θ)+ ((λ λ ^ ) α ^ φ ^ ,θ) Γ N 0λ K 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqiVd02aaSbaaSqaaiaaigdaaeqaaOGaaiikam aaHaaabaGaeq4UdWgacaGLcmaacaGGSaGaeq4UdWMaeyOeI0Yaaeca aeaacqaH7oaBaiaawkWaaiaacMcadaWgaaWcbaGaam4CaiaacYcacq qHPoWvaeqaaOGaey4kaSIaaiikaiaacIcacqaH7oaBcqGHsisldaqi aaqaaiabeU7aSbGaayPadaGaaiykaiabgEGirpaaHaaabaGaeqOXdO gacaGLcmaacaGGSaGaey4bIeTaeqiUdeNaaiykaiabgUcaRiaacIca caGGOaGaeq4UdWMaeyOeI0YaaecaaeaacqaH7oaBaiaawkWaaiaacM cadaqiaaqaaiabeg7aHbGaayPadaWaaecaaeaacqaHgpGAaiaawkWa aiaacYcacqaH4oqCcaGGPaWaaSbaaSqaaiabfo5ahnaaBaaabaGaam OtaaqabaaabeaakiabgwMiZkaaicdacaaMe8UaeyiaIiIaeq4UdWMa eyicI4Saam4samaaBaaaleaacaaIXaaabeaakiaacYcaaaa@6EEC@ (42)

  μ 2 ( α ^ ,α α ^ ) Γ N + ( λ ^ (α α ^ ) φ ^ ,θ) Γ N 0α K 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqiVd02aaSbaaSqaaiaaikdaaeqaaOGaaGikam aaHaaabaGaeqySdegacaGLcmaacaaISaGaeqySdeMaeyOeI0Yaaeca aeaacqaHXoqyaiaawkWaaiaaiMcadaWgaaWcbaGaeu4KdC0aaSbaae aacaWGobaabeaaaeqaaOGaey4kaSIaaGikamaaHaaabaGaeq4UdWga caGLcmaacaaIOaGaeqySdeMaeyOeI0YaaecaaeaacqaHXoqyaiaawk WaaiaaiMcadaqiaaqaaiabeA8aQbGaayPadaGaaGilaiabeI7aXjaa iMcadaWgaaWcbaGaeu4KdC0aaSbaaeaacaWGobaabeaaaeqaaOGaey yzImRaaGimaiaaysW7caaMe8UaeyiaIiIaeqySdeMaeyicI4Saam4s amaaBaaaleaacaaIYaaabeaakiaaiYcaaaa@5ED2@ (43)

  μ 3 ( f ^ ,f f ^ )(f f ^ ,θ)0f K 3 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqiVd02aaSbaaSqaaiaaiodaaeqaaOGaaGikam aaHaaabaGaamOzaaGaayPadaGaaGilaiaadAgacqGHsisldaqiaaqa aiaadAgaaiaawkWaaiaaiMcacqGHsislcaaIOaGaamOzaiabgkHiTm aaHaaabaGaamOzaaGaayPadaGaaGilaiabeI7aXjaaiMcacqGHLjYS caaIWaGaaGjbVlaaysW7cqGHaiIicaWGMbGaeyicI4Saam4samaaBa aaleaacaaIZaaabeaakiaai6caaaa@4F2B@ (44)

Уравнение Эйлера–Лагранжа (41), неравенства (42)–(44) и слабая формулировка (9) задачи 1 представляют собой систему оптимальности для задачи управления (15).

С использованием системы оптимальности, в большей степени принципа минимума, установим свойство релейности управлений α и f для задачи управления, отвечающей функционалу качества I 1 (φ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamysamaaBaaaleaacaaIXaaabeaakiaaiIcacq aHgpGAcaaIPaaaaa@367F@  из (16) и в случае, когда k(φ)=æ φ 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaam4AaiaaiIcacqaHgpGAcaaIPaGaaGypaiaaKB oacaaMi8UaeqOXdO2aaWbaaSqabeaacaaI0aaaaaaa@3C7C@ , λconst>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeq4UdWMaeyyyIORaae4yaiaab+gacaqGUbGaae 4CaiaabshacaaI+aGaaGimaaaa@3B53@ :

  J(φ) μ 0 φ φ d Q 2 inf,F(φ,(α,f))=0,(φ,(α,f)) H 1 (Ω)× K 2 × K 3 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamOsaiaaiIcacqaHgpGAcaaIPaGaeyyyIORaeq iVd02aaSbaaSqaaiaaicdaaeqaaebbfv3ySLgzGueE0jxyaGabaOGa e8xjIaLaeqOXdOMaeyOeI0IaeqOXdO2aaWbaaSqabeaacaWGKbaaaO Gae8xjIa1aa0baaSqaaiaadgfaaeaacaaIYaaaaOGaeyOKH4QaciyA aiaac6gacaGGMbGaaGilaiaaysW7caWGgbGaaGikaiabeA8aQjaaiY cacaaIOaGaeqySdeMaaGilaiaadAgacaaIPaGaaGykaiaai2dacaaI WaGaaGilaiaaysW7caaIOaGaeqOXdOMaaGilaiaaiIcacqaHXoqyca aISaGaamOzaiaaiMcacaaIPaGaeyicI4SaamisamaaCaaaleqabaGa aGymaaaakiaaiIcacqqHPoWvcaaIPaGaey41aqRaam4samaaBaaale aacaaIYaaabeaakiabgEna0kaadUeadaWgaaWcbaGaaG4maaqabaGc caaIUaaaaa@7346@ (45)

Пусть выполняется условие

(j ' MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaG4jaaaa@324F@  ) α min α α max MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqySde2aaSbaaSqaaiGac2gacaGGPbGaaiOBaa qabaGccqGHKjYOcqaHXoqycqGHKjYOcqaHXoqydaWgaaWcbaGaciyB aiaacggacaGG4baabeaaaaa@3FED@  п.в. на Γ N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeu4KdC0aaSbaaSqaaiaad6eaaeqaaaaa@3405@  для всех α K 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqySdeMaeyicI4Saam4samaaBaaaleaacaaIYa aabeaaaaa@3679@  и f min f f max MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAgadaWgaa WcbaGaciyBaiaacMgacaGGUbaabeaakiabgsMiJkaadAgacqGHKjYO caWGMbWaaSbaaSqaaiGac2gacaGGHbGaaiiEaaqabaaaaa@44B8@  п.в. в для всех f K 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamOzaiabgIGiolaadUeadaWgaaWcbaGaaG4maa qabaaaaa@35C6@ .

Здесь α min , α max , f min , f max MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqySde2aaSbaaSqaaiGac2gacaGGPbGaaiOBaa qabaGccaGGSaGaeqySde2aaSbaaSqaaiGac2gacaGGHbGaaiiEaaqa baGccaGGSaGaamOzamaaBaaaleaaciGGTbGaaiyAaiaac6gaaeqaaO GaaiilaiaadAgadaWgaaWcbaGaciyBaiaacggacaGG4baabeaaaaa@44DC@  — положительные числа.

Для задачи (45) неравенства (43), (44) принимают следующий вид:

  ((α α ^ ) φ ^ ,θ) Γ N 0α K 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikaiaaiIcacqaHXoqycqGHsisldaqiaaqaai abeg7aHbGaayPadaGaaGykamaaHaaabaGaeqOXdOgacaGLcmaacaaI SaGaeqiUdeNaaGykamaaBaaaleaacqqHtoWrdaWgaaqaaiaad6eaae qaaaqabaGccqGHLjYScaaIWaGaaGjbVlaaysW7cqGHaiIicqaHXoqy cqGHiiIZcaWGlbWaaSbaaSqaaiaaikdaaeqaaOGaaGilaaaa@4CD7@ (46)

  (f f ^ ,θ)0f K 3 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeyOeI0IaaGikaiaadAgacqGHsisldaqiaaqaai aadAgaaiaawkWaaiaaiYcacqaH4oqCcaaIPaGaeyyzImRaaGimaiaa ysW7caaMe8UaeyiaIiIaamOzaiabgIGiolaadUeadaWgaaWcbaGaaG 4maaqabaGccaaIUaaaaa@4535@ (47)

Из (46), (47) несложно получить (например, методом от противного) неравенства

αα^φ^θ0п.в.наΓNαK2,ff^θ0п.в.вΩfK3.

Если справедлив принцип максимума и минимума для концентрации φ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaqcLbvaqa aaaaaaaaWdbiab=z8aQbaa@3899@ , то из него вытекает неравенство φm MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqOXdOMaeyyzImRaamyBaaaa@3613@  на Γ N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeu4KdC0aaSbaaSqaaiaad6eaaeqaaaaa@3405@ . С учетом этого из последних неравенств получаем следующий принцип минимума для экстремальной задачи (45):

 αα^θ0п.внаΓNαK2, (48)

 ff^θ0п.в.вΩfK3. (49)

Из неравенств (48), (49) вытекает, что оптимальные управления α(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqySdeMaaGikaiaadIhacaaIPaaaaa@359F@  и f(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamOzaiaaiIcacaWG4bGaaGykaaaa@34EB@  задачи (45) могут принимать, в зависимости от знака множителя Лагранжа θ(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqiUdeNaaGikaiaadIhacaaIPaaaaa@35B6@ , только максимальные и минимальные значения α max MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqySde2aaSbaaSqaaiGac2gacaGGHbGaaiiEaa qabaaaaa@363D@ , α min MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqySde2aaSbaaSqaaiGac2gacaGGPbGaaiOBaa qabaaaaa@363B@  и f max MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamOzamaaBaaaleaaciGGTbGaaiyyaiaacIhaae qaaaaa@3589@ , f min MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamOzamaaBaaaleaaciGGTbGaaiyAaiaac6gaae qaaaaa@3587@  соответственно.

В таком случае говорят, что оптимальные управления α и f удовлетворяют свойству релейности, иначе, для этих управлений справедлив принцип bang–bang. Другими словами, подобное поведение оптимального управления интерпретируют как переключение между двумя состояниями или скачки из одного состояния в другое.

Если не удается исключить ситуацию, когда θ=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqiUdeNaaGypaiaaicdaaaa@34D5@  на некоторых подмножествах D 0 Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamiramaaBaaaleaacaaIWaaabeaakiabgkOiml abfM6axbaa@36E1@  и Γ N 0 Γ N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeu4KdC0aa0baaSqaaiaad6eaaeaacaaIWaaaaO GaeyOGIWSaeu4KdC0aaSbaaSqaaiaad6eaaeqaaaaa@392D@  положительной меры, которая приводит к неопределенности, в рамках которой управления f MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamOzaaaa@3289@  и α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqySdegaaa@333D@  на указанных подмножествах могут как перескочить из одного граничного значения в другое, так и не совершать такой скачок (см. (48), (49)), тогда свойство релейности называют нестрогим.

Покажем, что для управления f MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamOzaaaa@3289@  справедлив строгий принцип bang–bang, при котором указанная выше неопределенность не возникает. Для этого достаточно показать, что θ = 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqiUdeNabGypayaawaGaaGimaaaa@34F2@  п.в. в .

Из уравнения Эйлера–Лагранжа (41) при I(φ)= I 1 (φ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamysaiaaiIcacqaHgpGAcaaIPaGaaGypaiaadM eadaWgaaWcbaGaaGymaaqabaGccaaIOaGaeqOXdOMaaGykaaaa@3B36@  приходим к равенству

 Δθ+5æλ1φ^4θλ1μ0φ^φdп.в.вΩ. (50)

Из (50) вытекает, что если φ ^ = φ d MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaWaaecaaeaacqaHgpGAaiaawkWaaiqai2dagaGfai abeA8aQnaaBaaaleaacaWGKbaabeaaaaa@37D3@  п.в. в , то θ0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqiUdeNaeyiyIKRaaGimaaaa@35D5@  п.в. в . В таком случае говорят, что имеет место строгое свойство релейности.

Если φ= φ d MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqOXdOMaaGypaiabeA8aQnaaCaaaleqabaGaam izaaaaaaa@36F5@  в некоторой подобласти QΩ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamyuaiabgkOimlabfM6axbaa@35FE@  положительной меры, то из уравнения (50) вытекает, что

 Δθ+k~θп.в.вQ,k~æλ1φ^4LΩ (51)

В то же время, если θ=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqiUdeNaaGypaiaaicdaaaa@34D5@  п.в. в Q 0 QΩ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamyuamaaBaaaleaacaaIWaaabeaakiabgkOiml aadgfacqGHckcZcqqHPoWvaaa@39C0@ , μ( Q 0 )>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeY7aTjaaiI cacaWGrbWaaSbaaSqaaiaaicdaaeqaaOGaaGykaiaai6dacaaIWaaa aa@3EE8@ , то θ=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqiUdeNaaGypaiaaicdaaaa@34D5@  п.в. в , что вытекает из свойства единственности продолжения для эллиптических уравнений (см. [19], [32]). Но равенство θ=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqiUdeNaaGypaiaaicdaaaa@34D5@  п.в. в противоречит теореме 4.1. Таким образом, θ = 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqiUdeNabGypayaawaGaaGimaaaa@34F2@  п.в. в .

Из вышесказанного следует, что для управления f справедлив строгий принцип bang–bang или управление f удовлетворяет строгому свойству релейности. Здесь же отметим работы [14]–[18], посвященные исследованию свойства релейности оптимального управления.

5. Система оптимальности и устойчивость решений задачи управления

Нашей дальнейшей целью является анализ единственности и устойчивости (оптимальных) решений задачи (15) только с двумя мультипликативными управлениями λ и α. При этом требования на функцию λ будут более жесткими.

Будем считать, что вместо (j) и (jjj) выполняются условия

(j0) K 1 H λ 0 r (Ω) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaam4samaaBaaaleaacaaIXaaabeaakiabgkOiml aadIeadaqhaaWcbaGaeq4UdW2aaSbaaeaacaaIWaaabeaaaeaacaWG YbaaaOGaaGikaiabfM6axjaaiMcaaaa@3CD8@ , r3/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamOCaiabgwMiZkaaiodacaaIVaGaaGOmaaaa@368D@ , и K 2 L + 2 ( Γ N ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaam4samaaBaaaleaacaaIYaaabeaakiabgkOiml aadYeadaqhaaWcbaGaey4kaScabaGaaGOmaaaakiaaiIcacqqHtoWr daWgaaWcbaGaamOtaaqabaGccaaIPaaaaa@3BD8@  — непустые выпуклые замкнутые множества;

(jjj0) μ 0 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeY7aTnaaBa aaleaacaaIWaaabeaakiaai6dacaaIWaaaaa@3CAD@ , μ i 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeY7aTnaaBa aaleaacaWGPbaabeaakiabgwMiZkaaicdaaaa@3DDF@ , i=1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamyAaiaai2dacaaIXaGaaGilaiaaikdaaaa@3580@ , и множество K= K 1 × K 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaam4saiaai2dacaWGlbWaaSbaaSqaaiaaigdaae qaaOGaey41aqRaam4samaaBaaaleaacaaIYaaabeaaaaa@38C5@  ограничено или μ i >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeY7aTnaaBa aaleaacaWGPbaabeaakiaai6dacaaIWaaaaa@3CE1@ , i=0,1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamyAaiaai2dacaaIWaGaaGilaiaaigdacaaISa GaaGOmaaaa@36F0@ , и функционал I ограничен снизу.

Вместо (15) будем рассматривать следующую задачу управления:

J(φ,u) μ 0 2 I(φ)+ μ 1 2 λ s,Ω 2 + μ 2 2 α Γ N 2 inf, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamOsaiaaiIcacqaHgpGAcaaISaGaamyDaiaaiM cacqGHHjIUdaWcaaqaaiabeY7aTnaaBaaaleaacaaIWaaabeaaaOqa aiaaikdaaaGaamysaiaaiIcacqaHgpGAcaaIPaGaey4kaSYaaSaaae aacqaH8oqBdaWgaaWcbaGaaGymaaqabaaakeaacaaIYaaaaebbfv3y SLgzGueE0jxyaGabaiab=vIiqjabeU7aSjab=vIiqnaaDaaaleaaca WGZbGaaGilaiabfM6axbqaaiaaikdaaaGccqGHRaWkdaWcaaqaaiab eY7aTnaaBaaaleaacaaIYaaabeaaaOqaaiaaikdaaaGae8xjIaLaeq ySdeMae8xjIa1aa0baaSqaaiabfo5ahnaaBaaabaGaamOtaaqabaaa baGaaGOmaaaakiabgkziUkGacMgacaGGUbGaaiOzaiaaiYcacaaMe8 oaaa@63EC@

  F(φ,u)=0,(φ,u) H 1 (Ω)×K,u=(λ,α),s>3/2. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamOraiaaiIcacqaHgpGAcaaISaGaamyDaiaaiM cacaaI9aGaaGimaiaaiYcacaaMe8UaaGikaiabeA8aQjaaiYcacaWG 1bGaaGykaiabgIGiolaadIeadaahaaWcbeqaaiaaigdaaaGccaaIOa GaeuyQdCLaaGykaiabgEna0kaadUeacaaISaGaaGjbVlaadwhacaaI 9aGaaGikaiabeU7aSjaaiYcacqaHXoqycaaIPaGaaGilaiaaysW7ca WGZbGaaGOpaiaaiodacaaIVaGaaGOmaiaai6caaaa@594D@ (52)

Замечание 5.1. Ясно, что для задачи (52) как для частного случая задачи (15), но при более жестких условиях на управление λ, справедливы соответствующие аналоги теорем 3.1 и 4.1.

Далее нам понадобятся дополнительные свойства оптимальных решений задачи (52). Чтобы их получить, вместе с исходной задачей управления (52), рассмотрим возмущенную задачу

J ˜ (φ,u) μ 0 2 I ˜ (φ)+ μ 1 2 λ s,Ω 2 + μ 2 2 α Γ N 2 inf,s>3/2, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGabmOsayaaiaGaaGikaiabeA8aQjaaiYcacaWG1b GaaGykaiabggMi6oaalaaabaGaeqiVd02aaSbaaSqaaiaaicdaaeqa aaGcbaGaaGOmaaaaceWGjbGbaGaacaaIOaGaeqOXdOMaaGykaiabgU caRmaalaaabaGaeqiVd02aaSbaaSqaaiaaigdaaeqaaaGcbaGaaGOm aaaarqqr1ngBPrgifHhDYfgaiqaacqWFLicucqaH7oaBcqWFLicuda qhaaWcbaGaam4CaiaaiYcacqqHPoWvaeaacaaIYaaaaOGaey4kaSYa aSaaaeaacqaH8oqBdaWgaaWcbaGaaGOmaaqabaaakeaacaaIYaaaai ab=vIiqjabeg7aHjab=vIiqnaaDaaaleaacqqHtoWrdaWgaaqaaiaa d6eaaeqaaaqaaiaaikdaaaGccqGHsgIRciGGPbGaaiOBaiaacAgaca aISaGaaGjbVlaadohacaaI+aGaaG4maiaai+cacaaIYaGaaGilaaaa @68B2@

  F(φ,u)=0,(φ,u) H 1 (Ω)×K, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamOraiaaiIcacqaHgpGAcaaISaGaamyDaiaaiM cacaaI9aGaaGimaiaaiYcacaaMe8UaaGjbVlaaiIcacqaHgpGAcaaI SaGaamyDaiaaiMcacqGHiiIZcaWGibWaaWbaaSqabeaacaaIXaaaaO GaaGikaiabfM6axjaaiMcacqGHxdaTcaWGlbGaaGilaaaa@4B31@ (53)

заменив функционал I: H 1 (Ω) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamysaiaaiQdacaWGibWaaWbaaSqabeaacaaIXa aaaOGaaGikaiabfM6axjaaiMcacqGHsgIRtuuDJXwAK1uy0HMmaeHb fv3ySLgzG0uy0HgiuD3BaGabbiab=1risbaa@4487@  в (52) возмущенным функционалом I ˜ : H 1 (Ω) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGabmysayaaiaGaaGOoaiaadIeadaahaaWcbeqaai aaigdaaaGccaaIOaGaeuyQdCLaaGykaiabgkziUorr1ngBPrwtHrhA YaqeguuDJXwAKbstHrhAGq1DVbaceeGae8xhHifaaa@4496@ .

Пусть ( φ i , u i )=( φ i , λ i , α i ) H 1 (Ω)×K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikaiabeA8aQnaaBaaaleaacaWGPbaabeaaki aaiYcacaWG1bWaaSbaaSqaaiaadMgaaeqaaOGaaGykaiaai2dacaaI OaGaeqOXdO2aaSbaaSqaaiaadMgaaeqaaOGaaGilaiabeU7aSnaaBa aaleaacaWGPbaabeaakiaaiYcacqaHXoqydaWgaaWcbaGaamyAaaqa baGccaaIPaGaeyicI4SaamisamaaCaaaleqabaGaaGymaaaakiaaiI cacqqHPoWvcaaIPaGaey41aqRaam4saaaa@4DE9@  — решения задачи (52) при i=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamyAaiaai2dacaaIXaaaaa@340E@  и решение задачи (53) при i=2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamyAaiaai2dacaaIYaaaaa@340F@ . Из теорем 3.1 и 2.1 вытекает, что для управлений ( λ i , α i ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikaiabeU7aSnaaBaaaleaacaWGPbaabeaaki aaiYcacqaHXoqydaWgaaWcbaGaamyAaaqabaGccaaIPaaaaa@3954@  и состояния φ i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqOXdO2aaSbaaSqaaiaadMgaaeqaaaaa@3475@  справедливы следующие оценки:

  λ i s,Ω C λ , α i Γ N C α , φ i 1,Ω M φ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaqeeuuDJXwAKbsr4rNCHbaceaGae8xjIaLaeq4UdW 2aaSbaaSqaaiaadMgaaeqaaOGae8xjIa1aaSbaaSqaaiaadohacaaI SaGaeuyQdCfabeaakiabgsMiJkaadoeadaWgaaWcbaGaeq4UdWgabe aakiaaiYcacaaMe8Uae8xjIaLaeqySde2aaSbaaSqaaiaadMgaaeqa aOGae8xjIa1aaSbaaSqaaiabfo5ahnaaBaaabaGaamOtaaqabaaabe aakiabgsMiJkaadoeadaWgaaWcbaGaeqySdegabeaakiaaiYcacaaM e8Uae8xjIaLaeqOXdO2aaSbaaSqaaiaadMgaaeqaaOGae8xjIa1aaS baaSqaaiaaigdacaaISaGaeuyQdCfabeaakiabgsMiJkaad2eadaWg aaWcbaGaeqOXdOgabeaakiaai6caaaa@6107@ (54)

Здесь C λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaam4qamaaBaaaleaacqaH7oaBaeqaaaaa@3446@  и C α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaam4qamaaBaaaleaacqaHXoqyaeqaaaaa@3431@  — положительные константы, а константа M φ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamytamaaBaaaleaacqaHgpGAaeqaaaaa@3459@  определена в (10).

Через y i * ( θ i , ζ i ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamyEamaaDaaaleaacaWGPbaabaGaaGOkaaaaki abggMi6kaaiIcacqaH4oqCdaWgaaWcbaGaamyAaaqabaGccaaISaGa eqOTdO3aaSbaaSqaaiaadMgaaeqaaOGaaGykaaaa@3E14@ , i=1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamyAaiaai2dacaaIXaGaaGilaiaaikdaaaa@3580@ , обозначим нетривиальные множители Лагранжа, отвечающие решениям ( φ i , u i ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikaiabeA8aQnaaBaaaleaacaWGPbaabeaaki aaiYcacaWG1bWaaSbaaSqaaiaadMgaaeqaaOGaaGykaaaa@38B8@  задачи (52). В силу теоремы 4.1 указанные множители определяются однозначно и удовлетворяют соотношениям

  ( λ i τ, θ i )+5κ( φ i 4 τ, θ i )+ ( λ i α i τ, θ i ) Γ N + ζ i ,τ Γ D =( μ 0 /2) I φ ( φ i ),ττ H 1 (Ω). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikaiabeU7aSnaaBaaaleaacaWGPbaabeaaki abgEGirlabes8a0jaaiYcacqGHhis0cqaH4oqCdaWgaaWcbaGaamyA aaqabaGccaaIPaGaey4kaSIaaGynaiabeQ7aRjaaiIcacqaHgpGAda qhaaWcbaGaamyAaaqaaiaaisdaaaGccqaHepaDcaaISaGaeqiUde3a aSbaaSqaaiaadMgaaeqaaOGaaGykaiabgUcaRiaaiIcacqaH7oaBda WgaaWcbaGaamyAaaqabaGccqaHXoqydaWgaaWcbaGaamyAaaqabaGc cqaHepaDcaaISaGaeqiUde3aaSbaaSqaaiaadMgaaeqaaOGaaGykam aaBaaaleaacqqHtoWrdaWgaaqaaiaad6eaaeqaaaqabaGccqGHRaWk cqGHPms4cqaH2oGEdaWgaaWcbaGaamyAaaqabaGccaaISaGaeqiXdq NaeyOkJe=aaSbaaSqaaiabfo5ahnaaBaaabaGaamiraaqabaaabeaa kiaai2dacqGHsislcaaIOaGaeqiVd02aaSbaaSqaaiaaicdaaeqaaO GaaG4laiaaikdacaaIPaGaeyykJeUabmysayaafaWaaSbaaSqaaiab eA8aQbqabaGccaaIOaGaeqOXdO2aaSbaaSqaaiaadMgaaeqaaOGaaG ykaiaaiYcacqaHepaDcqGHQms8caaMe8UaeyiaIiIaeqiXdqNaeyic I4SaamisamaaCaaaleqabaGaaGymaaaakiaaiIcacqqHPoWvcaaIPa GaaGOlaaaa@8750@ (55)

Положим

v i = λ i α i ,i=1,2,λ= λ 1 λ 2 ,α= α 1 α 2 ,v= v 1 v 2 =λ α 1 + λ 2 α= λ 1 α+λ α 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamODamaaBaaaleaacaWGPbaabeaakiaai2dacq aH7oaBdaWgaaWcbaGaamyAaaqabaGccqaHXoqydaWgaaWcbaGaamyA aaqabaGccaaISaGaaGjcVlaadMgacaaI9aGaaGymaiaaiYcacaaIYa GaaGilaiaayIW7cqaH7oaBcaaI9aGaeq4UdW2aaSbaaSqaaiaaigda aeqaaOGaeyOeI0Iaeq4UdW2aaSbaaSqaaiaaikdaaeqaaOGaaGilai aaysW7cqaHXoqycaaI9aGaeqySde2aaSbaaSqaaiaaigdaaeqaaOGa eyOeI0IaeqySde2aaSbaaSqaaiaaikdaaeqaaOGaaGilaiaaysW7ca WG2bGaaGypaiaadAhadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWG 2bWaaSbaaSqaaiaaikdaaeqaaOGaaGypaiabeU7aSjabeg7aHnaaBa aaleaacaaIXaaabeaakiabgUcaRiabeU7aSnaaBaaaleaacaaIYaaa beaakiabeg7aHjaai2dacqaH7oaBdaWgaaWcbaGaaGymaaqabaGccq aHXoqycqGHRaWkcqaH7oaBcqaHXoqydaWgaaWcbaGaaGOmaaqabaGc caaISaaaaa@73DE@

  φ= φ 1 φ 2 ,ψ= ψ 1 ψ 2 ,θ= θ 1 θ 2 ,ζ= ζ 1 ζ 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqOXdOMaaGypaiabeA8aQnaaBaaaleaacaaIXa aabeaakiabgkHiTiabeA8aQnaaBaaaleaacaaIYaaabeaakiaaiYca caaMe8UaaGjbVlabeI8a5jaai2dacqaHipqEdaWgaaWcbaGaaGymaa qabaGccqGHsislcqaHipqEdaWgaaWcbaGaaGOmaaqabaGccaaISaGa aGjbVlaaysW7cqaH4oqCcaaI9aGaeqiUde3aaSbaaSqaaiaaigdaae qaaOGaeyOeI0IaeqiUde3aaSbaaSqaaiaaikdaaeqaaOGaaGilaiaa ysW7caaMe8UaeqOTdONaaGypaiabeA7a6naaBaaaleaacaaIXaaabe aakiabgkHiTiabeA7a6naaBaaaleaacaaIYaaabeaakiaai6caaaa@611C@ (56)

Первым из важных свойств представленных оптимальных решений является алгебраическое неравенство, показывающее связь разностей (56) и производных Фреше функционалов I(φ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamysaiaaiIcacqaHgpGAcaaIPaaaaa@358E@  и I ˜ (φ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGabmysayaaiaGaaGikaiabeA8aQjaaiMcaaaa@359D@  в точках φ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqOXdO2aaSbaaSqaaiaaigdaaeqaaaaa@3442@  и φ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqOXdO2aaSbaaSqaaiaaikdaaeqaaaaa@3443@ . Этот факт отражен в следующей теореме.

Теорема 5.1. Пусть выполняются условия (i), (ii) и (j 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaWaaSbaaSqaaiaaicdaaeqaaaaa@3284@  ), (jjj 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaWaaSbaaSqaaiaaicdaaeqaaaaa@3284@  ), k(φ)=κ φ 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaam4AaiaaiIcacqaHgpGAcaaIPaGaaGypaiabeQ 7aRjabeA8aQnaaCaaaleqabaGaaGinaaaaaaa@3AD1@ , и пусть функционалы I MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamysaaaa@326C@  и I ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGabmysayaaiaaaaa@327B@  непрерывно дифференцируемы по φ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaqcLbvaqa aaaaaaaaWdbiab=z8aQbaa@3899@ . Пусть тройки ( φ 1 , λ 1 , α 1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikaiabeA8aQnaaBaaaleaacaaIXaaabeaaki aaiYcacqaH7oaBdaWgaaWcbaGaaGymaaqabaGccaaISaGaeqySde2a aSbaaSqaaiaaigdaaeqaaOGaaGykaaaa@3C52@  и ( φ 2 , λ 2 , α 2 ) H 1 (Ω)×K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikaiabeA8aQnaaBaaaleaacaaIYaaabeaaki aaiYcacqaH7oaBdaWgaaWcbaGaaGOmaaqabaGccaaISaGaeqySde2a aSbaaSqaaiaaikdaaeqaaOGaaGykaiabgIGiolaadIeadaahaaWcbe qaaiaaigdaaaGccaaIOaGaeuyQdCLaaGykaiabgEna0kaadUeaaaa@4572@  являются решениями соответственно задач (52) и (53), и пусть y i * =( θ i , ζ i ) Y * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamyEamaaDaaaleaacaWGPbaabaGaaGOkaaaaki aai2dacaaIOaGaeqiUde3aaSbaaSqaaiaadMgaaeqaaOGaaGilaiab eA7a6naaBaaaleaacaWGPbaabeaakiaaiMcacqGHiiIZcaWGzbWaaW baaSqabeaacaaIQaaaaaaa@4055@ , i=1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamyAaiaai2dacaaIXaGaaGilaiaaikdaaaa@3580@ , — множители Лагранжа, соответствующие решениям φ i , λ i , α i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqOXdO2aaSbaaSqaaiaadMgaaeqaaOGaaGilai abeU7aSnaaBaaaleaacaWGPbaabeaakiaaiYcacqaHXoqydaWgaaWc baGaamyAaaqabaaaaa@3B7C@ , i=1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamyAaiaai2dacaaIXaGaaGilaiaaikdaaaa@3580@ . Тогда для разностей φ,λ,α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqOXdOMaaGilaiabeU7aSjaaiYcacqaHXoqyaa a@381A@  и θ,ζ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqiUdeNaaGilaiabeA7a6baa@35C7@ , определенных в (56), справедливо следующее неравенство:

( μ 0 /2) I φ ( φ 1 ) I ˜ φ ( φ 2 ),φ+ ζ,ψ Γ D + μ 1 λ s,Ω 2 + μ 2 α Γ N 2 A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikaiabeY7aTnaaBaaaleaacaaIWaaabeaaki aai+cacaaIYaGaaGykaiabgMYiHlaadMeadaWgaaWcbaGafqOXdOMb auaaaeqaaOGaaGikaiabeA8aQnaaBaaaleaacaaIXaaabeaakiaaiM cacqGHsislceWGjbGbaGaadaWgaaWcbaGafqOXdOMbauaaaeqaaOGa aGikaiabeA8aQnaaBaaaleaacaaIYaaabeaakiaaiMcacaaISaGaeq OXdOMaeyOkJeVaey4kaSIaeyykJeUaeqOTdONaaGilaiabeI8a5jab gQYiXpaaBaaaleaacqqHtoWrdaWgaaqaaiaadseaaeqaaaqabaGccq GHRaWkcqaH8oqBdaWgaaWcbaGaaGymaaqabaqeeuuDJXwAKbsr4rNC HbaceaGccqWFLicucqaH7oaBcqWFLicudaqhaaWcbaGaam4CaiaaiY cacqqHPoWvaeaacaaIYaaaaOGaey4kaSIaeqiVd02aaSbaaSqaaiaa ikdaaeqaaOGae8xjIaLaeqySdeMae8xjIa1aa0baaSqaaiabfo5ahn aaBaaabaGaamOtaaqabaaabaGaaGOmaaaakiabgsMiJkaadgeacqGH HjIUaaa@7632@

  κ[( k 1 φ,θ)+5( k 2 φ 2 , θ 2 )](λφ,( θ 1 + θ 2 )) (λα, φ 1 θ 1 + φ 2 θ 2 ) Γ N . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeyyyIORaeyOeI0IaeqOUdSMaai4waiaacIcaca WGRbWaaSbaaSqaaiaaigdaaeqaaOGaeqOXdOMaaiilaiabeI7aXjaa cMcacqGHRaWkcaaI1aGaaiikaiaadUgadaWgaaWcbaGaaGOmaaqaba GccqaHgpGAdaahaaWcbeqaaiaaikdaaaGccaGGSaGaeqiUde3aaSba aSqaaiaaikdaaeqaaOGaaiykaiaac2facqGHsislcaGGOaGaeq4UdW Maey4bIeTaeqOXdOMaaiilaiabgEGirlaacIcacqaH4oqCdaWgaaWc baGaaGymaaqabaGccqGHRaWkcqaH4oqCdaWgaaWcbaGaaGOmaaqaba GccaGGPaGaaiykaiabgkHiTiaacIcacqaH7oaBcqaHXoqycaGGSaGa eqOXdO2aaSbaaSqaaiaaigdaaeqaaOGaeqiUde3aaSbaaSqaaiaaig daaeqaaOGaey4kaSIaeqOXdO2aaSbaaSqaaiaaikdaaeqaaOGaeqiU de3aaSbaaSqaaiaaikdaaeqaaOGaaiykamaaBaaaleaacqqHtoWrda Wgaaqaaiaad6eaaeqaaaqabaGccaGGUaaaaa@701F@ (57)

Доказательство. Вычтем равенство (9) при k(φ)=κ φ 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaam4AaiaaiIcacqaHgpGAcaaIPaGaaGypaiabeQ 7aRjabeA8aQnaaCaaaleqabaGaaGinaaaaaaa@3AD1@ , записанное для ( φ 2 , u 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikaiabeA8aQnaaBaaaleaacaaIYaaabeaaki aaiYcacaWG1bWaaSbaaSqaaiaaikdaaeqaaOGaaGykaaaa@3854@ , из (9) при k(φ)=κ φ 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaam4AaiaaiIcacqaHgpGAcaaIPaGaaGypaiabeQ 7aRjabeA8aQnaaCaaaleqabaGaaGinaaaaaaa@3AD1@ , записанного для ( φ 1 , u 1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikaiabeA8aQnaaBaaaleaacaaIXaaabeaaki aaiYcacaWG1bWaaSbaaSqaaiaaigdaaeqaaOGaaGykaaaa@3852@ . Учитывая соотношения

φ 1 5 φ 2 5 =( φ 1 φ 2 )( φ 1 4 + φ 1 3 φ 2 + φ 1 2 φ 2 2 + φ 1 φ 2 3 + φ 2 4 ) k 0 φ, k 0 = φ 1 4 + φ 1 3 φ 2 + φ 1 2 φ 2 2 + φ 1 φ 2 3 + φ 2 4 0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqOXdO2aa0baaSqaaiaaigdaaeaacaaI1aaaaO GaeyOeI0IaeqOXdO2aa0baaSqaaiaaikdaaeaacaaI1aaaaOGaaGyp aiaaiIcacqaHgpGAdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaHgp GAdaWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGikaiabeA8aQnaaDaaa leaacaaIXaaabaGaaGinaaaakiabgUcaRiabeA8aQnaaDaaaleaaca aIXaaabaGaaG4maaaakiabeA8aQnaaBaaaleaacaaIYaaabeaakiab gUcaRiabeA8aQnaaDaaaleaacaaIXaaabaGaaGOmaaaakiabeA8aQn aaDaaaleaacaaIYaaabaGaaGOmaaaakiabgUcaRiabeA8aQnaaBaaa leaacaaIXaaabeaakiabeA8aQnaaDaaaleaacaaIYaaabaGaaG4maa aakiabgUcaRiabeA8aQnaaDaaaleaacaaIYaaabaGaaGinaaaakiaa iMcacqGHHjIUcaWGRbWaaSbaaSqaaiaaicdaaeqaaOGaeqOXdOMaaG ilaiaaysW7caWGRbWaaSbaaSqaaiaaicdaaeqaaOGaaGypaiabeA8a QnaaDaaaleaacaaIXaaabaGaaGinaaaakiabgUcaRiabeA8aQnaaDa aaleaacaaIXaaabaGaaG4maaaakiabeA8aQnaaBaaaleaacaaIYaaa beaakiabgUcaRiabeA8aQnaaDaaaleaacaaIXaaabaGaaGOmaaaaki abeA8aQnaaDaaaleaacaaIYaaabaGaaGOmaaaakiabgUcaRiabeA8a QnaaBaaaleaacaaIXaaabeaakiabeA8aQnaaDaaaleaacaaIYaaaba GaaG4maaaakiabgUcaRiabeA8aQnaaDaaaleaacaaIYaaabaGaaGin aaaakiabgwMiZkaaicdacaaISaaaaa@8BA9@

( λ 1 φ 1 ,h)( λ 2 φ 2 ,h)=( λ 1 φ,h)+(λ φ 2 ,h), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikaiabeU7aSnaaBaaaleaacaaIXaaabeaaki abgEGirlabeA8aQnaaBaaaleaacaaIXaaabeaakiaaiYcacqGHhis0 caWGObGaaGykaiabgkHiTiaaiIcacqaH7oaBdaWgaaWcbaGaaGOmaa qabaGccqGHhis0cqaHgpGAdaWgaaWcbaGaaGOmaaqabaGccaaISaGa ey4bIeTaamiAaiaaiMcacaaI9aGaaGikaiabeU7aSnaaBaaaleaaca aIXaaabeaakiabgEGirlabeA8aQjaaiYcacqGHhis0caWGObGaaGyk aiabgUcaRiaaiIcacqaH7oaBcqGHhis0cqaHgpGAdaWgaaWcbaGaaG OmaaqabaGccaaISaGaey4bIeTaamiAaiaaiMcacaaISaaaaa@60A7@

( v 1 φ 1 ,h) Γ N ( v 2 φ 2 ,h) Γ N =( v 1 ,φh ) Γ N + (v, φ 2 h) Γ N , v i = λ i α i ,v= v 1 v 2 ,i=1,2, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikaiaadAhadaWgaaWcbaGaaGymaaqabaGccq aHgpGAdaWgaaWcbaGaaGymaaqabaGccaaISaGaamiAaiaaiMcadaWg aaWcbaGaeu4KdC0aaSbaaeaacaWGobaabeaaaeqaaOGaeyOeI0IaaG ikaiaadAhadaWgaaWcbaGaaGOmaaqabaGccqaHgpGAdaWgaaWcbaGa aGOmaaqabaGccaaISaGaamiAaiaaiMcadaWgaaWcbaGaeu4KdC0aaS baaeaacaWGobaabeaaaeqaaOGaaGypaiaaiIcacaWG2bWaaSbaaSqa aiaaigdaaeqaaOGaaGilaiabeA8aQjaadIgacaaIPaWaaSbaaSqaai abfo5ahnaaBaaabaGaamOtaaqabaaabeaakiabgUcaRiaaiIcacaWG 2bGaaGilaiabeA8aQnaaBaaaleaacaaIYaaabeaakiaadIgacaaIPa WaaSbaaSqaaiabfo5ahnaaBaaabaGaamOtaaqabaaabeaakiaaiYca caaMe8UaamODamaaBaaaleaacaWGPbaabeaakiaai2dacqaH7oaBda WgaaWcbaGaamyAaaqabaGccqaHXoqydaWgaaWcbaGaamyAaaqabaGc caaISaGaaGjbVlaadAhacaaI9aGaamODamaaBaaaleaacaaIXaaabe aakiabgkHiTiaadAhadaWgaaWcbaGaaGOmaaqabaGccaaISaGaaGjb VlaadMgacaaI9aGaaGymaiaaiYcacaaIYaGaaGilaaaa@758F@

приходим к равенству

  ( λ 1 φ,h)+ (λ φ 2 ,h) Γ N +κ( k 0 φ,h)+ ( v 1 ,φh) Γ N + (v, φ 2 h) Γ N =0hT. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikaiabeU7aSnaaBaaaleaacaaIXaaabeaaki abgEGirlabeA8aQjaaiYcacqGHhis0caWGObGaaGykaiabgUcaRiaa iIcacqaH7oaBcqGHhis0cqaHgpGAdaWgaaWcbaGaaGOmaaqabaGcca aISaGaey4bIeTaamiAaiaaiMcadaWgaaWcbaGaeu4KdC0aaSbaaeaa caWGobaabeaaaeqaaOGaey4kaSIaeqOUdSMaaGikaiaadUgadaWgaa WcbaGaaGimaaqabaGccqaHgpGAcaaISaGaamiAaiaaiMcacqGHRaWk caaIOaGaamODamaaBaaaleaacaaIXaaabeaakiaaiYcacqaHgpGAca WGObGaaGykamaaBaaaleaacqqHtoWrdaWgaaqaaiaad6eaaeqaaaqa baGccqGHRaWkcaaIOaGaamODaiaaiYcacqaHgpGAdaWgaaWcbaGaaG OmaaqabaGccaWGObGaaGykamaaBaaaleaacqqHtoWrdaWgaaqaaiaa d6eaaeqaaaqabaGccaaI9aGaaGimaiaaysW7caaMe8UaeyiaIiIaam iAaiabgIGioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbac eaGae83eXtLaaGOlaaaa@7B7D@ (58)

Положим далее h=θ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamiAaiaai2dacqaH4oqCaaa@3508@  в (58). Будем иметь

  ( λ 1 φ,θ)+(λ φ 2 ,θ)+κ( k 0 φ,θ)+ ( v 1 ,φθ) Γ N + (v, φ 2 θ) Γ N =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikaiabeU7aSnaaBaaaleaacaaIXaaabeaaki abgEGirlabeA8aQjaaiYcacqGHhis0cqaH4oqCcaaIPaGaey4kaSIa aGikaiabeU7aSjabeA8aQnaaBaaaleaacaaIYaaabeaakiaaiYcacq aH4oqCcaaIPaGaey4kaSIaeqOUdSMaaGikaiaadUgadaWgaaWcbaGa aGimaaqabaGccqaHgpGAcaaISaGaeqiUdeNaaGykaiabgUcaRiaaiI cacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeA8aQjabeI7a XjaaiMcadaWgaaWcbaGaeu4KdC0aaSbaaeaacaWGobaabeaaaeqaaO Gaey4kaSIaaGikaiaadAhacaaISaGaeqOXdO2aaSbaaSqaaiaaikda aeqaaOGaeqiUdeNaaGykamaaBaaaleaacqqHtoWrdaWgaaqaaiaad6 eaaeqaaaqabaGccaaI9aGaaGimaiaai6caaaa@680B@ (59)

Вычитая (55) при i=2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamyAaiaai2dacaaIYaaaaa@340F@  из (55) при i=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamyAaiaai2dacaaIXaaaaa@340E@ , с учетом соотношений

( φ 1 4 τ, θ 1 )( φ 2 4 τ, θ 2 )=( φ 1 4 τ,θ)+(( φ 1 4 φ 2 4 )τ, θ 2 )=( φ 1 4 τ,θ)+(( φ 1 + φ 2 )( φ 1 2 + φ 2 2 )φτ, θ 2 ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikaiabeA8aQnaaDaaaleaacaaIXaaabaGaaG inaaaakiabes8a0jaaiYcacqaH4oqCdaWgaaWcbaGaaGymaaqabaGc caaIPaGaeyOeI0IaaGikaiabeA8aQnaaDaaaleaacaaIYaaabaGaaG inaaaakiabes8a0jaaiYcacqaH4oqCdaWgaaWcbaGaaGOmaaqabaGc caaIPaGaaGypaiaaiIcacqaHgpGAdaqhaaWcbaGaaGymaaqaaiaais daaaGccqaHepaDcaaISaGaeqiUdeNaaGykaiabgUcaRiaaiIcacaaI OaGaeqOXdO2aa0baaSqaaiaaigdaaeaacaaI0aaaaOGaeyOeI0Iaeq OXdO2aa0baaSqaaiaaikdaaeaacaaI0aaaaOGaaGykaiabes8a0jaa iYcacqaH4oqCdaWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGypaiaaiI cacqaHgpGAdaqhaaWcbaGaaGymaaqaaiaaisdaaaGccqaHepaDcaaI SaGaeqiUdeNaaGykaiabgUcaRiaaiIcacaaIOaGaeqOXdO2aaSbaaS qaaiaaigdaaeqaaOGaey4kaSIaeqOXdO2aaSbaaSqaaiaaikdaaeqa aOGaaGykaiaaiIcacqaHgpGAdaqhaaWcbaGaaGymaaqaaiaaikdaaa GccqGHRaWkcqaHgpGAdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccaaI PaGaeqOXdOMaeqiXdqNaaGilaiabeI7aXnaaBaaaleaacaaIYaaabe aakiaaiMcacaaISaaaaa@853F@

( λ 1 τ, θ 1 )( λ 2 τ, θ 2 )=(λτ, θ 1 )+( λ 2 τ,θ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikaiabeU7aSnaaBaaaleaacaaIXaaabeaaki abgEGirlabes8a0jaaiYcacqGHhis0cqaH4oqCdaWgaaWcbaGaaGym aaqabaGccaaIPaGaeyOeI0IaaGikaiabeU7aSnaaBaaaleaacaaIYa aabeaakiabgEGirlabes8a0jaaiYcacqGHhis0cqaH4oqCdaWgaaWc baGaaGOmaaqabaGccaaIPaGaaGypaiaaiIcacqaH7oaBcqGHhis0cq aHepaDcaaISaGaey4bIeTaeqiUde3aaSbaaSqaaiaaigdaaeqaaOGa aGykaiabgUcaRiaaiIcacqaH7oaBdaWgaaWcbaGaaGOmaaqabaGccq GHhis0cqaHepaDcaaISaGaey4bIeTaeqiUdeNaaGykaiaaiYcaaaa@63EB@

( v 1 τ, θ 1 ) Γ N ( v 2 τ, θ 2 ) Γ N =(v,τ θ 1 ) Γ N + ( v 2 τ,θ) Γ N , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikaiaadAhadaWgaaWcbaGaaGymaaqabaGccq aHepaDcaaISaGaeqiUde3aaSbaaSqaaiaaigdaaeqaaOGaaGykamaa BaaaleaacqqHtoWrdaWgaaqaaiaad6eaaeqaaaqabaGccqGHsislca aIOaGaamODamaaBaaaleaacaaIYaaabeaakiabes8a0jaaiYcacqaH 4oqCdaWgaaWcbaGaaGOmaaqabaGccaaIPaWaaSbaaSqaaiabfo5ahn aaBaaabaGaamOtaaqabaaabeaakiaai2dacaaIOaGaamODaiaaiYca cqaHepaDcqaH4oqCdaWgaaWcbaGaaGymaaqabaGccaaIPaWaaSbaaS qaaiabfo5ahnaaBaaabaGaamOtaaqabaaabeaakiabgUcaRiaaiIca caWG2bWaaSbaaSqaaiaaikdaaeqaaOGaeqiXdqNaaGilaiabeI7aXj aaiMcadaWgaaWcbaGaeu4KdC0aaSbaaeaacaWGobaabeaaaeqaaOGa aGilaaaa@5F1F@

получим

(λτ, θ 1 )+( λ 2 τ,θ)+5κ( φ 1 4 τ,θ)+5κ(( φ 1 4 φ 2 4 )τ, θ 2 )+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikaiabeU7aSjabgEGirlabes8a0jaaiYcacq GHhis0cqaH4oqCdaWgaaWcbaGaaGymaaqabaGccaaIPaGaey4kaSIa aGikaiabeU7aSnaaBaaaleaacaaIYaaabeaakiabgEGirlabes8a0j aaiYcacqGHhis0cqaH4oqCcaaIPaGaey4kaSIaaGynaiabeQ7aRjaa iIcacqaHgpGAdaqhaaWcbaGaaGymaaqaaiaaisdaaaGccqaHepaDca aISaGaeqiUdeNaaGykaiabgUcaRiaaiwdacqaH6oWAcaaIOaGaaGik aiabeA8aQnaaDaaaleaacaaIXaaabaGaaGinaaaakiabgkHiTiabeA 8aQnaaDaaaleaacaaIYaaabaGaaGinaaaakiaaiMcacqaHepaDcaaI SaGaeqiUde3aaSbaaSqaaiaaikdaaeqaaOGaaGykaiabgUcaRaaa@694F@

  + (vτ, θ 1 ) Γ N + ( v 2 τ,θ) Γ N + ζ,h Γ D =( μ 0 /2) I φ (φ) I φ ( φ 2 ),ττ H 1 (Ω). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaey4kaSIaaGikaiaadAhacqaHepaDcaaISaGaeq iUde3aaSbaaSqaaiaaigdaaeqaaOGaaGykamaaBaaaleaacqqHtoWr daWgaaqaaiaad6eaaeqaaaqabaGccqGHRaWkcaaIOaGaamODamaaBa aaleaacaaIYaaabeaakiabes8a0jaaiYcacqaH4oqCcaaIPaWaaSba aSqaaiabfo5ahnaaBaaabaGaamOtaaqabaaabeaakiabgUcaRiabgM YiHlabeA7a6jaaiYcacaWGObGaeyOkJe=aaSbaaSqaaiabfo5ahnaa BaaabaGaamiraaqabaaabeaakiaai2dacqGHsislcaaIOaGaeqiVd0 2aaSbaaSqaaiaaicdaaeqaaOGaaG4laiaaikdacaaIPaGaeyykJeUa bmysayaafaWaaSbaaSqaaiabeA8aQbqabaGccaaIOaGaeqOXdOMaaG ykaiabgkHiTiqadMeagaqbamaaBaaaleaacqaHgpGAaeqaaOGaaGik aiabeA8aQnaaBaaaleaacaaIYaaabeaakiaaiMcacaaISaGaeqiXdq NaeyOkJeVaaGjbVlaaysW7cqGHaiIicqaHepaDcqGHiiIZcaWGibWa aWbaaSqabeaacaaIXaaaaOGaaGikaiabfM6axjaaiMcacaaIUaaaaa@7964@ (60)

Подставляя τ=φ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqiXdqNaaGypaiabeA8aQbaa@35E7@  в (60), получим

(λφ, θ 1 )+( λ 2 φ,θ)+5κ( φ 1 4 φ,θ)+5κ(( φ 1 + φ 2 )( φ 1 2 + φ 2 2 ) φ 2 , θ 2 )+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikaiabeU7aSjabgEGirlabeA8aQjaaiYcacq GHhis0cqaH4oqCdaWgaaWcbaGaaGymaaqabaGccaaIPaGaey4kaSIa aGikaiabeU7aSnaaBaaaleaacaaIYaaabeaakiabgEGirlabeA8aQj aaiYcacqGHhis0cqaH4oqCcaaIPaGaey4kaSIaaGynaiabeQ7aRjaa iIcacqaHgpGAdaqhaaWcbaGaaGymaaqaaiaaisdaaaGccqaHgpGAca aISaGaeqiUdeNaaGykaiabgUcaRiaaiwdacqaH6oWAcaaIOaGaaGik aiabeA8aQnaaBaaaleaacaaIXaaabeaakiabgUcaRiabeA8aQnaaBa aaleaacaaIYaaabeaakiaaiMcacaaIOaGaeqOXdO2aa0baaSqaaiaa igdaaeaacaaIYaaaaOGaey4kaSIaeqOXdO2aa0baaSqaaiaaikdaae aacaaIYaaaaOGaaGykaiabeA8aQnaaCaaaleqabaGaaGOmaaaakiaa iYcacqaH4oqCdaWgaaWcbaGaaGOmaaqabaGccaaIPaGaey4kaScaaa@71B7@

  + (vφ, θ 1 ) Γ N + ( v 2 φ,θ) Γ N + ζ,ψ Γ D =( μ 0 /2) I φ ( φ 1 ) I ˜ φ ( φ 2 ),φ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaey4kaSIaaGikaiaadAhacqaHgpGAcaaISaGaeq iUde3aaSbaaSqaaiaaigdaaeqaaOGaaGykamaaBaaaleaacqqHtoWr daWgaaqaaiaad6eaaeqaaaqabaGccqGHRaWkcaaIOaGaamODamaaBa aaleaacaaIYaaabeaakiabeA8aQjaaiYcacqaH4oqCcaaIPaWaaSba aSqaaiabfo5ahnaaBaaabaGaamOtaaqabaaabeaakiabgUcaRiabgM YiHlabeA7a6jaaiYcacqaHipqEcqGHQms8daWgaaWcbaGaeu4KdC0a aSbaaeaacaWGebaabeaaaeqaaOGaaGypaiabgkHiTiaaiIcacqaH8o qBdaWgaaWcbaGaaGimaaqabaGccaaIVaGaaGOmaiaaiMcacqGHPms4 ceWGjbGbauaadaWgaaWcbaGaeqOXdOgabeaakiaaiIcacqaHgpGAda WgaaWcbaGaaGymaaqabaGccaaIPaGaeyOeI0IabmysayaaiyaafaWa aSbaaSqaaiabeA8aQbqabaGccaaIOaGaeqOXdO2aaSbaaSqaaiaaik daaeqaaOGaaGykaiaaiYcacqaHgpGAcqGHQms8caaIUaaaaa@6F47@ (61)

Вычитая (59) из (61), с учетом соотношений

(λφ, θ 1 )+( λ 2 φ,θ)( λ 1 φ,θ)(λ φ 2 ,θ)= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikaiabeU7aSjabgEGirlabeA8aQjaaiYcacq GHhis0cqaH4oqCdaWgaaWcbaGaaGymaaqabaGccaaIPaGaey4kaSIa aGikaiabeU7aSnaaBaaaleaacaaIYaaabeaakiabgEGirlabeA8aQj aaiYcacqGHhis0cqaH4oqCcaaIPaGaeyOeI0IaaGikaiabeU7aSnaa BaaaleaacaaIXaaabeaakiabgEGirlabeA8aQjaaiYcacqGHhis0cq aH4oqCcaaIPaGaeyOeI0IaaGikaiabeU7aSjabgEGirlabeA8aQnaa BaaaleaacaaIYaaabeaakiaaiYcacqGHhis0cqaH4oqCcaaIPaGaaG ypaaaa@621F@

=(λφ, θ 1 )(λ φ 1 ,θ)=(λ φ 2 ,θ)(λφ, θ 1 )+(λφ,( θ 1 + θ 2 )), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGypaiaaiIcacqaH7oaBcqGHhis0cqaHgpGAca aISaGaey4bIeTaeqiUde3aaSbaaSqaaiaaigdaaeqaaOGaaGykaiab gkHiTiaaiIcacqaH7oaBcqGHhis0cqaHgpGAdaWgaaWcbaGaaGymaa qabaGccaaISaGaey4bIeTaeqiUdeNaaGykaiaai2dacqGHsislcaaI OaGaeq4UdWMaey4bIeTaeqOXdO2aaSbaaSqaaiaaikdaaeqaaOGaaG ilaiabgEGirlabeI7aXjaaiMcacqGHsislcaaIOaGaeq4UdWMaey4b IeTaeqOXdOMaaGilaiabgEGirlabeI7aXnaaBaaaleaacaaIXaaabe aakiaaiMcacqGHRaWkcaaIOaGaeq4UdWMaey4bIeTaeqOXdOMaaGil aiabgEGirlaaiIcacqaH4oqCdaWgaaWcbaGaaGymaaqabaGccqGHRa WkcqaH4oqCdaWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGykaiaaiYca aaa@74B6@

(v,φ θ 1 ) Γ N + ( v 2 φ,θ) Γ N ( v 1 ,φθ) Γ N (v, φ 2 θ) Γ N = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikaiaadAhacaaISaGaeqOXdOMaeqiUde3aaS baaSqaaiaaigdaaeqaaOGaaGykamaaBaaaleaacqqHtoWrdaWgaaqa aiaad6eaaeqaaaqabaGccqGHRaWkcaaIOaGaamODamaaBaaaleaaca aIYaaabeaakiabeA8aQjaaiYcacqaH4oqCcaaIPaWaaSbaaSqaaiab fo5ahnaaBaaabaGaamOtaaqabaaabeaakiabgkHiTiaaiIcacaWG2b WaaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeA8aQjabeI7aXjaaiMca daWgaaWcbaGaeu4KdC0aaSbaaeaacaWGobaabeaaaeqaaOGaeyOeI0 IaaGikaiaadAhacaaISaGaeqOXdO2aaSbaaSqaaiaaikdaaeqaaOGa eqiUdeNaaGykamaaBaaaleaacqqHtoWrdaWgaaqaaiaad6eaaeqaaa qabaGccaaI9aaaaa@5D53@

=(v,φ θ 1 ) Γ N (v, φ 1 θ) Γ N = (v, φ 2 θ) Γ N (v,φ θ 1 ) Γ N + (vφ, θ 1 + θ 2 ) Γ N , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGypaiaaiIcacaWG2bGaaGilaiabeA8aQjabeI 7aXnaaBaaaleaacaaIXaaabeaakiaaiMcadaWgaaWcbaGaeu4KdC0a aSbaaeaacaWGobaabeaaaeqaaOGaeyOeI0IaaGikaiaadAhacaaISa GaeqOXdO2aaSbaaSqaaiaaigdaaeqaaOGaeqiUdeNaaGykamaaBaaa leaacqqHtoWrdaWgaaqaaiaad6eaaeqaaaqabaGccaaI9aGaeyOeI0 IaaGikaiaadAhacaaISaGaeqOXdO2aaSbaaSqaaiaaikdaaeqaaOGa eqiUdeNaaGykamaaBaaaleaacqqHtoWrdaWgaaqaaiaad6eaaeqaaa qabaGccqGHsislcaaIOaGaamODaiaaiYcacqaHgpGAcqaH4oqCdaWg aaWcbaGaaGymaaqabaGccaaIPaWaaSbaaSqaaiabfo5ahnaaBaaaba GaamOtaaqabaaabeaakiabgUcaRiaaiIcacaWG2bGaeqOXdOMaaGil aiabeI7aXnaaBaaaleaacaaIXaaabeaakiabgUcaRiabeI7aXnaaBa aaleaacaaIYaaabeaakiaaiMcadaWgaaWcbaGaeu4KdC0aaSbaaeaa caWGobaabeaaaeqaaOGaaGilaaaa@6D52@

5κ( φ 1 4 φ,θ)+5κ(( φ 1 + φ 2 )( φ 1 2 + φ 2 2 ) φ 2 , θ 2 )κ( k 0 φ,θ)=κ( k 1 φ,θ)+5κ( k 2 φ 2 , θ 2 ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGynaiabeQ7aRjaaiIcacqaHgpGAdaqhaaWcba GaaGymaaqaaiaaisdaaaGccqaHgpGAcaaISaGaeqiUdeNaaGykaiab gUcaRiaaiwdacqaH6oWAcaaIOaGaaGikaiabeA8aQnaaBaaaleaaca aIXaaabeaakiabgUcaRiabeA8aQnaaBaaaleaacaaIYaaabeaakiaa iMcacaaIOaGaeqOXdO2aa0baaSqaaiaaigdaaeaacaaIYaaaaOGaey 4kaSIaeqOXdO2aa0baaSqaaiaaikdaaeaacaaIYaaaaOGaaGykaiab eA8aQnaaCaaaleqabaGaaGOmaaaakiaaiYcacqaH4oqCdaWgaaWcba GaaGOmaaqabaGccaaIPaGaeyOeI0IaeqOUdSMaaGikaiaadUgadaWg aaWcbaGaaGimaaqabaGccqaHgpGAcaaISaGaeqiUdeNaaGykaiaai2 dacqaH6oWAcaaIOaGaam4AamaaBaaaleaacaaIXaaabeaakiabeA8a QjaaiYcacqaH4oqCcaaIPaGaey4kaSIaaGynaiabeQ7aRjaaiIcaca WGRbWaaSbaaSqaaiaaikdaaeqaaOGaeqOXdO2aaWbaaSqabeaacaaI YaaaaOGaaGilaiabeI7aXnaaBaaaleaacaaIYaaabeaakiaaiMcaca aISaaaaa@79E5@

  k 1 4 φ 1 4 φ 1 3 φ 2 φ 1 2 φ 2 2 φ 1 φ 2 3 φ 2 4 , k 2 ( φ 1 + φ 2 )( φ 1 2 + φ 2 2 ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaam4AamaaBaaaleaacaaIXaaabeaakiabggMi6k aaisdacqaHgpGAdaqhaaWcbaGaaGymaaqaaiaaisdaaaGccqGHsisl cqaHgpGAdaqhaaWcbaGaaGymaaqaaiaaiodaaaGccqaHgpGAdaWgaa WcbaGaaGOmaaqabaGccqGHsislcqaHgpGAdaqhaaWcbaGaaGymaaqa aiaaikdaaaGccqaHgpGAdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccq GHsislcqaHgpGAdaWgaaWcbaGaaGymaaqabaGccqaHgpGAdaqhaaWc baGaaGOmaaqaaiaaiodaaaGccqGHsislcqaHgpGAdaqhaaWcbaGaaG OmaaqaaiaaisdaaaGccaaISaGaaGjbVlaaysW7caWGRbWaaSbaaSqa aiaaikdaaeqaaOGaeyyyIORaaGikaiabeA8aQnaaBaaaleaacaaIXa aabeaakiabgUcaRiabeA8aQnaaBaaaleaacaaIYaaabeaakiaaiMca caaIOaGaeqOXdO2aa0baaSqaaiaaigdaaeaacaaIYaaaaOGaey4kaS IaeqOXdO2aa0baaSqaaiaaikdaaeaacaaIYaaaaOGaaGykaiaaiYca aaa@6C95@ (62)

получаем следующее равенство:

κ( k 1 φ,θ)+5κ( k 2 φ 2 , θ 2 )(λ φ 2 ,θ)(λφ, θ 1 )+(λφ,( θ 1 + θ 2 )) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqOUdSMaaGikaiaadUgadaWgaaWcbaGaaGymaa qabaGccqaHgpGAcaaISaGaeqiUdeNaaGykaiabgUcaRiaaiwdacqaH 6oWAcaaIOaGaam4AamaaBaaaleaacaaIYaaabeaakiabeA8aQnaaCa aaleqabaGaaGOmaaaakiaaiYcacqaH4oqCdaWgaaWcbaGaaGOmaaqa baGccaaIPaGaeyOeI0IaaGikaiabeU7aSjabgEGirlabeA8aQnaaBa aaleaacaaIYaaabeaakiaaiYcacqGHhis0cqaH4oqCcaaIPaGaeyOe I0IaaGikaiabeU7aSjabgEGirlabeA8aQjaaiYcacqGHhis0cqaH4o qCdaWgaaWcbaGaaGymaaqabaGccaaIPaGaey4kaSIaaGikaiabeU7a SjabgEGirlabeA8aQjaaiYcacqGHhis0caaIOaGaeqiUde3aaSbaaS qaaiaaigdaaeqaaOGaey4kaSIaeqiUde3aaSbaaSqaaiaaikdaaeqa aOGaaGykaiaaiMcacqGHsislaaa@71BD@

   (v, φ 2 θ) Γ N (v,φ θ 1 ) Γ N + (vφ, θ 1 + θ 2 ) Γ N + ζ,ψ Γ D =( μ 0 /2) I φ ( φ 1 ) I ˜ φ ( φ 2 ),φ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeyOeI0IaaGikaiaadAhacaaISaGaeqOXdO2aaS baaSqaaiaaikdaaeqaaOGaeqiUdeNaaGykamaaBaaaleaacqqHtoWr daWgaaqaaiaad6eaaeqaaaqabaGccqGHsislcaaIOaGaamODaiaaiY cacqaHgpGAcqaH4oqCdaWgaaWcbaGaaGymaaqabaGccaaIPaWaaSba aSqaaiabfo5ahnaaBaaabaGaamOtaaqabaaabeaakiabgUcaRiaaiI cacaWG2bGaeqOXdOMaaGilaiabeI7aXnaaBaaaleaacaaIXaaabeaa kiabgUcaRiabeI7aXnaaBaaaleaacaaIYaaabeaakiaaiMcadaWgaa WcbaGaeu4KdC0aaSbaaeaacaWGobaabeaaaeqaaOGaey4kaSIaeyyk JeUaeqOTdONaaGilaiabeI8a5jabgQYiXpaaBaaaleaacqqHtoWrda WgaaqaaiaadseaaeqaaaqabaGccaaI9aGaeyOeI0IaaGikaiabeY7a TnaaBaaaleaacaaIWaaabeaakiaai+cacaaIYaGaaGykaiabgMYiHl qadMeagaqbamaaBaaaleaacqaHgpGAaeqaaOGaaGikaiabeA8aQnaa BaaaleaacaaIXaaabeaakiaaiMcacqGHsislceWGjbGbaGGbauaada WgaaWcbaGaeqOXdOgabeaakiaaiIcacqaHgpGAdaWgaaWcbaGaaGOm aaqabaGccaaIPaGaaGilaiabeA8aQjabgQYiXlaai6caaaa@7DD5@ (63)

Положим λ= λ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeq4UdWMaaGypaiabeU7aSnaaBaaaleaacaaIYa aabeaaaaa@36B5@  в неравенстве (42), записанном при λ ^ = λ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaWaaecaaeaacqaH7oaBaiaawkWaaiaai2dacqaH7o aBdaWgaaWcbaGaaGymaaqabaaaaa@3776@ , α ^ = α 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaWaaecaaeaacqaHXoqyaiaawkWaaiaai2dacqaHXo qydaWgaaWcbaGaaGymaaqabaaaaa@374C@ , φ ^ = φ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaWaaecaaeaacqaHgpGAaiaawkWaaiaai2dacqaHgp GAdaWgaaWcbaGaaGymaaqabaaaaa@3788@  и θ= θ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqiUdeNaaGypaiabeI7aXnaaBaaaleaacaaIXa aabeaaaaa@36B8@ . С учетом обозначений (56) получим

μ 1 ( λ 1 ,λ) s,Ω (λ φ 1 , θ 1 ) (λ α 1 φ 1 , θ 1 ) Γ N 0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeyOeI0IaeqiVd02aaSbaaSqaaiaaigdaaeqaaO GaaGikaiabeU7aSnaaBaaaleaacaaIXaaabeaakiaaiYcacqaH7oaB caaIPaWaaSbaaSqaaiaadohacaaISaGaeuyQdCfabeaakiabgkHiTi aaiIcacqaH7oaBcqGHhis0cqaHgpGAdaWgaaWcbaGaaGymaaqabaGc caaISaGaey4bIeTaeqiUde3aaSbaaSqaaiaaigdaaeqaaOGaaGykai abgkHiTiaaiIcacqaH7oaBcqaHXoqydaWgaaWcbaGaaGymaaqabaGc cqaHgpGAdaWgaaWcbaGaaGymaaqabaGccaaISaGaeqiUde3aaSbaaS qaaiaaigdaaeqaaOGaaGykamaaBaaaleaacqqHtoWrdaWgaaqaaiaa d6eaaeqaaaqabaGccqGHLjYScaaIWaGaaGOlaaaa@5EA0@

Полагая λ= λ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeq4UdWMaaGypaiabeU7aSnaaBaaaleaacaaIXa aabeaaaaa@36B4@  в неравенстве (42), записанном для λ ^ = λ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaWaaecaaeaacqaH7oaBaiaawkWaaiaai2dacqaH7o aBdaWgaaWcbaGaaGOmaaqabaaaaa@3777@ , α ^ = α 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaWaaecaaeaacqaHXoqyaiaawkWaaiaai2dacqaHXo qydaWgaaWcbaGaaGOmaaqabaaaaa@374D@ , φ ^ = φ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaWaaecaaeaacqaHgpGAaiaawkWaaiaai2dacqaHgp GAdaWgaaWcbaGaaGOmaaqabaaaaa@3789@  и θ= θ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqiUdeNaaGypaiabeI7aXnaaBaaaleaacaaIYa aabeaaaaa@36B9@ , получим

μ 1 ( λ 2 ,λ) s,Ω +(λ φ 2 , θ 2 )+ (λ α 2 φ 2 , θ 2 ) Γ N 0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqiVd02aaSbaaSqaaiaaigdaaeqaaOGaaGikai abeU7aSnaaBaaaleaacaaIYaaabeaakiaaiYcacqaH7oaBcaaIPaWa aSbaaSqaaiaadohacaaISaGaeuyQdCfabeaakiabgUcaRiaaiIcacq aH7oaBcqGHhis0cqaHgpGAdaWgaaWcbaGaaGOmaaqabaGccaaISaGa ey4bIeTaeqiUde3aaSbaaSqaaiaaikdaaeqaaOGaaGykaiabgUcaRi aaiIcacqaH7oaBcqaHXoqydaWgaaWcbaGaaGOmaaqabaGccqaHgpGA daWgaaWcbaGaaGOmaaqabaGccaaISaGaeqiUde3aaSbaaSqaaiaaik daaeqaaOGaaGykamaaBaaaleaacqqHtoWrdaWgaaqaaiaad6eaaeqa aaqabaGccqGHLjYScaaIWaGaaGOlaaaa@5DA3@

Складывая эти неравенства, приходим к следующей оценке:

  (λ φ 1 , θ 1 )+(λ φ 2 , θ 2 ) (λ α 1 φ 1 , θ 1 ) Γ N + (λ α 2 φ 2 , θ 2 ) Γ N μ 1 λ s,Ω 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeyOeI0IaaGikaiabeU7aSjabgEGirlabeA8aQn aaBaaaleaacaaIXaaabeaakiaaiYcacqGHhis0cqaH4oqCdaWgaaWc baGaaGymaaqabaGccaaIPaGaey4kaSIaaGikaiabeU7aSjabgEGirl abeA8aQnaaBaaaleaacaaIYaaabeaakiaaiYcacqGHhis0cqaH4oqC daWgaaWcbaGaaGOmaaqabaGccaaIPaGaeyOeI0IaaGikaiabeU7aSj abeg7aHnaaBaaaleaacaaIXaaabeaakiabeA8aQnaaBaaaleaacaaI XaaabeaakiaaiYcacqaH4oqCdaWgaaWcbaGaaGymaaqabaGccaaIPa WaaSbaaSqaaiabfo5ahnaaBaaabaGaamOtaaqabaaabeaakiabgUca RiaaiIcacqaH7oaBcqaHXoqydaWgaaWcbaGaaGOmaaqabaGccqaHgp GAdaWgaaWcbaGaaGOmaaqabaGccaaISaGaeqiUde3aaSbaaSqaaiaa ikdaaeqaaOGaaGykamaaBaaaleaacqqHtoWrdaWgaaqaaiaad6eaae qaaaqabaGccqGHLjYScqaH8oqBdaWgaaWcbaGaaGymaaqabaqeeuuD JXwAKbsr4rNCHbaceaGccqWFLicucqaH7oaBcqWFLicudaqhaaWcba Gaam4CaiaaiYcacqqHPoWvaeaacaaIYaaaaOGaaGOlaaaa@7C08@ (64)

Положим α= α 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqySdeMaaGypaiabeg7aHnaaBaaaleaacaaIYa aabeaaaaa@368B@  в неравенстве (43), записанном при α ^ = α 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaWaaecaaeaacqaHXoqyaiaawkWaaiaai2dacqaHXo qydaWgaaWcbaGaaGymaaqabaaaaa@374C@ , λ ^ = λ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaWaaecaaeaacqaH7oaBaiaawkWaaiaai2dacqaH7o aBdaWgaaWcbaGaaGymaaqabaaaaa@3776@ , φ ^ = φ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaWaaecaaeaacqaHgpGAaiaawkWaaiaai2dacqaHgp GAdaWgaaWcbaGaaGymaaqabaaaaa@3788@  и θ= θ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqiUdeNaaGypaiabeI7aXnaaBaaaleaacaaIXa aabeaaaaa@36B8@ . С учетом обозначений (56) выводим

μ 2 ( α 1 ,α) Γ N ( λ 1 α φ 1 , θ 1 ) Γ N 0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeyOeI0IaeqiVd02aaSbaaSqaaiaaikdaaeqaaO GaaGikaiabeg7aHnaaBaaaleaacaaIXaaabeaakiaaiYcacqaHXoqy caaIPaWaaSbaaSqaaiabfo5ahnaaBaaabaGaamOtaaqabaaabeaaki abgkHiTiaaiIcacqaH7oaBdaWgaaWcbaGaaGymaaqabaGccqaHXoqy cqaHgpGAdaWgaaWcbaGaaGymaaqabaGccaaISaGaeqiUde3aaSbaaS qaaiaaigdaaeqaaOGaaGykamaaBaaaleaacqqHtoWrdaWgaaqaaiaa d6eaaeqaaaqabaGccqGHLjYScaaIWaGaaGOlaaaa@507A@

Полагая α= α 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqySdeMaaGypaiabeg7aHnaaBaaaleaacaaIXa aabeaaaaa@368A@  в (43), записанном для α ^ = α 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaWaaecaaeaacqaHXoqyaiaawkWaaiaai2dacqaHXo qydaWgaaWcbaGaaGOmaaqabaaaaa@374D@ , λ ^ = λ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaWaaecaaeaacqaH7oaBaiaawkWaaiaai2dacqaH7o aBdaWgaaWcbaGaaGOmaaqabaaaaa@3777@ , φ ^ = φ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaWaaecaaeaacqaHgpGAaiaawkWaaiaai2dacqaHgp GAdaWgaaWcbaGaaGOmaaqabaaaaa@3789@  и θ= θ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqiUdeNaaGypaiabeI7aXnaaBaaaleaacaaIYa aabeaaaaa@36B9@ , получим

μ 2 ( α 2 ,α) Γ N + ( λ 2 α φ 2 , θ 2 ) Γ N 0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqiVd02aaSbaaSqaaiaaikdaaeqaaOGaaGikai abeg7aHnaaBaaaleaacaaIYaaabeaakiaaiYcacqaHXoqycaaIPaWa aSbaaSqaaiabfo5ahnaaBaaabaGaamOtaaqabaaabeaakiabgUcaRi aaiIcacqaH7oaBdaWgaaWcbaGaaGOmaaqabaGccqaHXoqycqaHgpGA daWgaaWcbaGaaGOmaaqabaGccaaISaGaeqiUde3aaSbaaSqaaiaaik daaeqaaOGaaGykamaaBaaaleaacqqHtoWrdaWgaaqaaiaad6eaaeqa aaqabaGccqGHLjYScaaIWaGaaGOlaaaa@4F86@

Складывая эти неравенства, приходим к оценке

  ( λ 1 α φ 1 , θ 1 ) Γ N + ( λ 2 α φ 2 , θ 2 ) Γ N μ 2 α Γ N 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeyOeI0IaaGikaiabeU7aSnaaBaaaleaacaaIXa aabeaakiabeg7aHjabeA8aQnaaBaaaleaacaaIXaaabeaakiaaiYca cqaH4oqCdaWgaaWcbaGaaGymaaqabaGccaaIPaWaaSbaaSqaaiabfo 5ahnaaBaaabaGaamOtaaqabaaabeaakiabgUcaRiaaiIcacqaH7oaB daWgaaWcbaGaaGOmaaqabaGccqaHXoqycqaHgpGAdaWgaaWcbaGaaG OmaaqabaGccaaISaGaeqiUde3aaSbaaSqaaiaaikdaaeqaaOGaaGyk amaaBaaaleaacqqHtoWrdaWgaaqaaiaad6eaaeqaaaqabaGccqGHLj YScqaH8oqBdaWgaaWcbaGaaGOmaaqabaqeeuuDJXwAKbsr4rNCHbac eaGccqWFLicucqaHXoqycqWFLicudaqhaaWcbaGaeu4KdC0aaSbaae aacaWGobaabeaaaeaacaaIYaaaaOGaaGOlaaaa@60E3@ (65)

В свою очередь, складывая (64) и (65) и рассуждая как в [26], получаем

(λφ, θ 1 )(λ φ 2 ,θ) (v,φ θ 1 ) Γ N (v, φ 2 θ) Γ N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeyOeI0IaaGikaiabeU7aSjabgEGirlabeA8aQj aaiYcacqGHhis0cqaH4oqCdaWgaaWcbaGaaGymaaqabaGccaaIPaGa eyOeI0IaaGikaiabeU7aSjabgEGirlabeA8aQnaaBaaaleaacaaIYa aabeaakiaaiYcacqGHhis0cqaH4oqCcaaIPaGaeyOeI0IaaGikaiaa dAhacaaISaGaeqOXdOMaeqiUde3aaSbaaSqaaiaaigdaaeqaaOGaaG ykamaaBaaaleaacqqHtoWrdaWgaaqaaiaad6eaaeqaaaqabaGccqGH sislcaaIOaGaamODaiaaiYcacqaHgpGAdaWgaaWcbaGaaGOmaaqaba GccqaH4oqCcaaIPaWaaSbaaSqaaiabfo5ahnaaBaaabaGaamOtaaqa baaabeaakiabgwMiZcaa@61B0@

  μ 1 λ s,Ω 2 + μ 2 α Γ N 2 + (λα, φ 1 θ 1 + φ 2 θ 2 ) Γ N . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeyyzImRaeqiVd02aaSbaaSqaaiaaigdaaeqaae bbfv3ySLgzGueE0jxyaGabaOGae8xjIaLaeq4UdWMae8xjIa1aa0ba aSqaaiaadohacaaISaGaeuyQdCfabaGaaGOmaaaakiabgUcaRiabeY 7aTnaaBaaaleaacaaIYaaabeaakiab=vIiqjabeg7aHjab=vIiqnaa DaaaleaacqqHtoWrdaWgaaqaaiaad6eaaeqaaaqaaiaaikdaaaGccq GHRaWkcaaIOaGaeq4UdWMaeqySdeMaaGilaiabeA8aQnaaBaaaleaa caaIXaaabeaakiabeI7aXnaaBaaaleaacaaIXaaabeaakiabgUcaRi abeA8aQnaaBaaaleaacaaIYaaabeaakiabeI7aXnaaBaaaleaacaaI YaaabeaakiaaiMcadaWgaaWcbaGaeu4KdC0aaSbaaeaacaWGobaabe aaaeqaaOGaaGOlaaaa@6299@ (66)

Наконец, с учетом (66) из (63) мы выводим основное неравенство (57). Теорема доказана.

В заключение раздела выведем оценку нормы разности φ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqOXdOgaaa@335B@  через соответствующие нормы разностей управлений λ, α и возмущенной функции ψ. Для этого обратимся к равенству (58), в дополнение к (56) полагая

  φ= φ ˜ + φ 0 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqOXdOMaaGypaiqbeA8aQzaaiaGaey4kaSIaeq OXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGilaaaa@3A33@ (67)

где φ ˜ = φ ˜ 1 φ ˜ 2 T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGafqOXdOMbaGaacaaI9aGafqOXdOMbaGaadaWgaa WcbaGaaGymaaqabaGccqGHsislcuaHgpGAgaacamaaBaaaleaacaaI YaaabeaakiabgIGioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8 KBLbaceaGae83eXtfaaa@4783@ , φ 0 = φ 0 1 φ 0 2 H 1 (Ω) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGypai abeA8aQnaaDaaaleaacaaIWaaabaGaaGymaaaakiabgkHiTiabeA8a QnaaDaaaleaacaaIWaaabaGaaGOmaaaakiabgIGiolaadIeadaahaa WcbeqaaiaaigdaaaGccaaIOaGaeuyQdCLaaGykaaaa@4308@ .

Из леммы 2.2 и линейности оператора частичного следа γ | Γ D MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeq4SdCMaaGiFamaaBaaaleaacqqHtoWrdaWgaa qaaiaadseaaeqaaaqabaaaaa@36C9@  вытекает

   φ 0 1,Ω C Γ ψ 1/2, Γ D . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaqeeuuDJXwAKbsr4rNCHbaceaGae8xjIaLaeqOXdO 2aaSbaaSqaaiaaicdaaeqaaOGae8xjIa1aaSbaaSqaaiaaigdacaaI SaGaeuyQdCfabeaakiabgsMiJkaadoeadaWgaaWcbaGaeu4KdCeabe aakiab=vIiqjabeI8a5jab=vIiqnaaBaaaleaacaaIXaGaaG4laiaa ikdacaaISaGaeu4KdC0aaSbaaeaacaWGebaabeaaaeqaaOGaaGOlaa aa@4C9A@ (68)

Используя представление (67) и полагая h= φ ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamiAaiaai2dacuaHgpGAgaacaaaa@351E@  в (58), получим

( λ 1 φ ˜ , φ ˜ )+κ( k 0 φ ˜ , φ ˜ )+ ( v 1 φ ˜ , φ ˜ ) Γ N =( λ 1 φ 0 , φ ˜ ) (λ φ 2 , φ ˜ ) Γ N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikaiabeU7aSnaaBaaaleaacaaIXaaabeaaki abgEGirlqbeA8aQzaaiaGaaGilaiabgEGirlqbeA8aQzaaiaGaaGyk aiabgUcaRiabeQ7aRjaaiIcacaWGRbWaaSbaaSqaaiaaicdaaeqaaO GafqOXdOMbaGaacaaISaGafqOXdOMbaGaacaaIPaGaey4kaSIaaGik aiaadAhadaWgaaWcbaGaaGymaaqabaGccuaHgpGAgaacaiaaiYcacu aHgpGAgaacaiaaiMcadaWgaaWcbaGaeu4KdC0aaSbaaeaacaWGobaa beaaaeqaaOGaaGypaiabgkHiTiaaiIcacqaH7oaBdaWgaaWcbaGaaG ymaaqabaGccqGHhis0cqaHgpGAdaWgaaWcbaGaaGimaaqabaGccaaI SaGaey4bIeTafqOXdOMbaGaacaaIPaGaeyOeI0IaaGikaiabeU7aSj abgEGirlabeA8aQnaaBaaaleaacaaIYaaabeaakiaaiYcacqGHhis0 cuaHgpGAgaacaiaaiMcadaWgaaWcbaGaeu4KdC0aaSbaaeaacaWGob aabeaaaeqaaOGaeyOeI0caaa@6FF7@

  ( v 1 φ 0 , φ ˜ ) Γ N κ( k 0 φ 0 , φ ˜ ) (v, φ 2 φ ˜ ) Γ N . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeyOeI0IaaGikaiaadAhadaWgaaWcbaGaaGymaa qabaGccqaHgpGAdaWgaaWcbaGaaGimaaqabaGccaaISaGafqOXdOMb aGaacaaIPaWaaSbaaSqaaiabfo5ahnaaBaaabaGaamOtaaqabaaabe aakiabgkHiTiabeQ7aRjaaiIcacaWGRbWaaSbaaSqaaiaaicdaaeqa aOGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGilaiqbeA8aQzaaia GaaGykaiabgkHiTiaaiIcacaWG2bGaaGilaiabeA8aQnaaBaaaleaa caaIYaaabeaakiqbeA8aQzaaiaGaaGykamaaBaaaleaacqqHtoWrda Wgaaqaaiaad6eaaeqaaaqabaGccaaIUaaaaa@5478@ (69)

Поскольку k 0 L + p (Ω),p3/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaam4AamaaBaaaleaacaaIWaaabeaakiabgIGiol aadYeadaqhaaWcbaGaey4kaScabaGaamiCaaaakiaaiIcacqqHPoWv caaIPaGaaGilaiaaysW7caWGWbGaeyyzImRaaG4maiaai+cacaaIYa aaaa@4204@ , v 1 = α 1 λ 1 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamODamaaBaaaleaacaaIXaaabeaakiaai2dacq aHXoqydaWgaaWcbaGaaGymaaqabaGccqaH7oaBdaWgaaWcbaGaaGym aaqabaGccqGHLjYScaaIWaaaaa@3C06@  на Γ N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeu4KdC0aaSbaaSqaaiaad6eaaeqaaaaa@3405@ , то, применяя лемму 2.1, с учетом оценок (54) и обозначений (56) из (69) приходим к оценке

λ * φ ˜ 1,Ω C 1 C λ C Γ ψ 1/2, Γ D + C 1 M φ λ s,Ω + γ 2 C λ C α C Γ ψ 1/2, Γ D + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeq4UdW2aaSbaaSqaaiaaiQcaaeqaaebbfv3ySL gzGueE0jxyaGabaOGae8xjIaLafqOXdOMbaGaacqWFLicudaWgaaWc baGaaGymaiaaiYcacqqHPoWvaeqaaOGaeyizImQaam4qamaaBaaale aacaaIXaaabeaakiaadoeadaWgaaWcbaGaeq4UdWgabeaakiaadoea daWgaaWcbaGaeu4KdCeabeaakiab=vIiqjabeI8a5jab=vIiqnaaBa aaleaacaaIXaGaaG4laiaaikdacaaISaGaeu4KdC0aaSbaaeaacaWG ebaabeaaaeqaaOGaey4kaSIaam4qamaaBaaaleaacaaIXaaabeaaki aad2eadaWgaaWcbaGaeqOXdOgabeaakiab=vIiqjabeU7aSjab=vIi qnaaBaaaleaacaWGZbGaaGilaiabfM6axbqabaGccqGHRaWkcqaHZo WzdaWgaaWcbaGaaGOmaaqabaGccaWGdbWaaSbaaSqaaiabeU7aSbqa baGccaWGdbWaaSbaaSqaaiabeg7aHbqabaGccaWGdbWaaSbaaSqaai abfo5ahbqabaGccqWFLicucqaHipqEcqWFLicudaWgaaWcbaGaaGym aiaai+cacaaIYaGaaGilaiabfo5ahnaaBaaabaGaamiraaqabaaabe aakiabgUcaRaaa@744E@

+5κ C 6 6 M φ 4 C Γ ψ 1/2, Γ D + γ 2 M φ ( C λ α Γ N + C α λ s,Ω )= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaey4kaSIaaGynaiabeQ7aRjaadoeadaqhaaWcba GaaGOnaaqaaiaaiAdaaaGccaWGnbWaa0baaSqaaiabeA8aQbqaaiaa isdaaaGccaWGdbWaaSbaaSqaaiabfo5ahbqabaqeeuuDJXwAKbsr4r NCHbaceaGccqWFLicucqaHipqEcqWFLicudaWgaaWcbaGaaGymaiaa i+cacaaIYaGaaGilaiabfo5ahnaaBaaabaGaamiraaqabaaabeaaki abgUcaRiabeo7aNnaaBaaaleaacaaIYaaabeaakiaad2eadaWgaaWc baGaeqOXdOgabeaakiaaiIcacaWGdbWaaSbaaSqaaiabeU7aSbqaba GccqWFLicucqaHXoqycqWFLicudaWgaaWcbaGaeu4KdC0aaSbaaeaa caWGobaabeaaaeqaaOGaey4kaSIaam4qamaaBaaaleaacqaHXoqyae qaaOGae8xjIaLaeq4UdWMae8xjIa1aaSbaaSqaaiaadohacaaISaGa euyQdCfabeaakiaaiMcacaaI9aaaaa@67CD@

= C Γ ( C 1 C λ + γ 2 C λ C α +5κ C 6 6 M φ 4 )ψ 1/2, Γ D + M φ ( C 1 + γ 2 C α )λ s,Ω + γ 2 M φ C λ α Γ N . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGypaiaadoeadaWgaaWcbaGaeu4KdCeabeaaki aaiIcacaWGdbWaaSbaaSqaaiaaigdaaeqaaOGaam4qamaaBaaaleaa cqaH7oaBaeqaaOGaey4kaSIaeq4SdC2aaSbaaSqaaiaaikdaaeqaaO Gaam4qamaaBaaaleaacqaH7oaBaeqaaOGaam4qamaaBaaaleaacqaH XoqyaeqaaOGaey4kaSIaaGynaiabeQ7aRjaadoeadaqhaaWcbaGaaG OnaaqaaiaaiAdaaaGccaWGnbWaa0baaSqaaiabeA8aQbqaaiaaisda aaGccaaIPaqeeuuDJXwAKbsr4rNCHbaceaGae8xjIaLaeqiYdKNae8 xjIa1aaSbaaSqaaiaaigdacaaIVaGaaGOmaiaaiYcacqqHtoWrdaWg aaqaaiaadseaaeqaaaqabaGccqGHRaWkcaWGnbWaaSbaaSqaaiabeA 8aQbqabaGccaaIOaGaam4qamaaBaaaleaacaaIXaaabeaakiabgUca Riabeo7aNnaaBaaaleaacaaIYaaabeaakiaadoeadaWgaaWcbaGaeq ySdegabeaakiaaiMcacqWFLicucqaH7oaBcqWFLicudaWgaaWcbaGa am4CaiaaiYcacqqHPoWvaeqaaOGaey4kaSIaeq4SdC2aaSbaaSqaai aaikdaaeqaaOGaamytamaaBaaaleaacqaHgpGAaeqaaOGaam4qamaa BaaaleaacqaH7oaBaeqaaOGae8xjIaLaeqySdeMae8xjIa1aaSbaaS qaaiabfo5ahnaaBaaabaGaamOtaaqabaaabeaakiaai6caaaa@7F18@

С учетом (68) оценка для нормы разности φ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqOXdOgaaa@335B@  будет иметь вид

φ 1,Ω ω 1 λ s,Ω + ω 2 α Γ N + ω 3 ψ 1/2, Γ D , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaqeeuuDJXwAKbsr4rNCHbaceaGae8xjIaLaeqOXdO Mae8xjIa1aaSbaaSqaaiaaigdacaaISaGaeuyQdCfabeaakiabgsMi JkabeM8a3naaBaaaleaacaaIXaaabeaakiab=vIiqjabeU7aSjab=v IiqnaaBaaaleaacaWGZbGaaGilaiabfM6axbqabaGccqGHRaWkcqaH jpWDdaWgaaWcbaGaaGOmaaqabaGccqWFLicucqaHXoqycqWFLicuda WgaaWcbaGaeu4KdC0aaSbaaeaacaWGobaabeaaaeqaaOGaey4kaSIa eqyYdC3aaSbaaSqaaiaaiodaaeqaaOGae8xjIaLaeqiYdKNae8xjIa 1aaSbaaSqaaiaaigdacaaIVaGaaGOmaiaaiYcacqqHtoWrdaWgaaqa aiaadseaaeqaaaqabaGccaaISaaaaa@610A@

ω 1 = C * M φ ( C 1 + γ 2 C α ), ω 2 = γ 2 C * C λ M φ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqyYdC3aaSbaaSqaaiaaigdaaeqaaOGaaGypai aadoeadaWgaaWcbaGaaGOkaaqabaGccaWGnbWaaSbaaSqaaiabeA8a QbqabaGccaaIOaGaam4qamaaBaaaleaacaaIXaaabeaakiabgUcaRi abeo7aNnaaBaaaleaacaaIYaaabeaakiaadoeadaWgaaWcbaGaeqyS degabeaakiaaiMcacaaISaGaaGjbVlaaysW7cqaHjpWDdaWgaaWcba GaaGOmaaqabaGccaaI9aGaeq4SdC2aaSbaaSqaaiaaikdaaeqaaOGa am4qamaaBaaaleaacaaIQaaabeaakiaadoeadaWgaaWcbaGaeq4UdW gabeaakiaad2eadaWgaaWcbaGaeqOXdOgabeaakiaaiYcaaaa@549E@

  ω 3 = C * C Γ ( C 1 C λ + γ 2 C λ C α +5κ C 6 6 M φ 4 + λ * ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqyYdC3aaSbaaSqaaiaaiodaaeqaaOGaaGypai aadoeadaWgaaWcbaGaaGOkaaqabaGccaWGdbWaaSbaaSqaaiabfo5a hbqabaGccaaIOaGaam4qamaaBaaaleaacaaIXaaabeaakiaadoeada WgaaWcbaGaeq4UdWgabeaakiabgUcaRiabeo7aNnaaBaaaleaacaaI YaaabeaakiaadoeadaWgaaWcbaGaeq4UdWgabeaakiaadoeadaWgaa WcbaGaeqySdegabeaakiabgUcaRiaaiwdacqaH6oWAcaWGdbWaa0ba aSqaaiaaiAdaaeaacaaI2aaaaOGaamytamaaDaaaleaacqaHgpGAae aacaaI0aaaaOGaey4kaSIaeq4UdW2aaSbaaSqaaiaaiQcaaeqaaOGa aGykaiaai6caaaa@5565@ (70)

6. Оценки устойчивости оптимальных решений

Используя теорему 5.1, выведем в данном разделе оценки локальной устойчивости оптимальных решений задачи (52) для конкретных функционалов качества.

Рассмотрим следующую задачу управления:

J(φ,u)=( μ 0 /2)φ φ d Q 2 +( μ 1 /2)λ s,Ω 2 +( μ 2 /2)α Γ N 2 inf, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamOsaiaaiIcacqaHgpGAcaaISaGaamyDaiaaiM cacaaI9aGaaGikaiabeY7aTnaaBaaaleaacaaIWaaabeaakiaai+ca caaIYaGaaGykaebbfv3ySLgzGueE0jxyaGabaiab=vIiqjabeA8aQj abgkHiTiabeA8aQnaaCaaaleqabaGaamizaaaakiab=vIiqnaaDaaa leaacaWGrbaabaGaaGOmaaaakiabgUcaRiaaiIcacqaH8oqBdaWgaa WcbaGaaGymaaqabaGccaaIVaGaaGOmaiaaiMcacqWFLicucqaH7oaB cqWFLicudaqhaaWcbaGaam4CaiaaiYcacqqHPoWvaeaacaaIYaaaaO Gaey4kaSIaaGikaiabeY7aTnaaBaaaleaacaaIYaaabeaakiaai+ca caaIYaGaaGykaiab=vIiqjabeg7aHjab=vIiqnaaDaaaleaacqqHto WrdaWgaaqaaiaad6eaaeqaaaqaaiaaikdaaaGccqGHsgIRciGGPbGa aiOBaiaacAgacaaISaaaaa@6D1F@

  F(φ,u)=0,(φ,u) H 1 (Ω)×K,s>3/2, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamOraiaaiIcacqaHgpGAcaaISaGaamyDaiaaiM cacaaI9aGaaGimaiaaiYcacaaMe8UaaGikaiabeA8aQjaaiYcacaWG 1bGaaGykaiabgIGiolaadIeadaahaaWcbeqaaiaaigdaaaGccaaIOa GaeuyQdCLaaGykaiabgEna0kaadUeacaaISaGaaGjbVlaadohacaaI +aGaaG4maiaai+cacaaIYaGaaGilaaaa@4FD9@ (71)

отвечающую функционалу качества I 1 (φ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamysamaaBaaaleaacaaIXaaabeaakiaaiIcacq aHgpGAcaaIPaaaaa@367F@ .

Через ( φ 1 , u 1 ) H 1 (Ω)×K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikaiabeA8aQnaaBaaaleaacaaIXaaabeaaki aaiYcacaWG1bWaaSbaaSqaaiaaigdaaeqaaOGaaGykaiabgIGiolaa dIeadaahaaWcbeqaaiaaigdaaaGccaaIOaGaeuyQdCLaaGykaiabgE na0kaadUeaaaa@416F@  обозначим решение задачи (71), отвечающее заданным функциям φ d = φ 1 d L 2 (Q) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqOXdO2aaWbaaSqabeaacaWGKbaaaOGaaGypai abeA8aQnaaDaaaleaacaaIXaaabaGaamizaaaakiabgIGiolaadYea daahaaWcbeqaaiaaikdaaaGccaaIOaGaamyuaiaaiMcaaaa@3E5D@  и ψ 1 H 1/2 ( Γ D ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqiYdK3aaSbaaSqaaiaaigdaaeqaaOGaeyicI4 SaamisamaaCaaaleqabaGaaGymaiaai+cacaaIYaaaaOGaaGikaiab fo5ahnaaBaaaleaacaWGebaabeaakiaaiMcaaaa@3CE1@ , а через ( φ 2 , u 2 ) H 1 (Ω)×K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikaiabeA8aQnaaBaaaleaacaaIYaaabeaaki aaiYcacaWG1bWaaSbaaSqaaiaaikdaaeqaaOGaaGykaiabgIGiolaa dIeadaahaaWcbeqaaiaaigdaaaGccaaIOaGaeuyQdCLaaGykaiabgE na0kaadUeaaaa@4171@  обозначим решение задачи (71), отвечающее возмущенным функциям φ ˜ d φ 2 d L 2 (Q) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGafqOXdOMbaGaadaahaaWcbeqaaiaadsgaaaGccq GHHjIUcqaHgpGAdaqhaaWcbaGaaGOmaaqaaiaadsgaaaGccqGHiiIZ caWGmbWaaWbaaSqabeaacaaIYaaaaOGaaGikaiaadgfacaaIPaaaaa@3F6F@  и ψ 2 H 1/2 ( Γ D ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqiYdK3aaSbaaSqaaiaaikdaaeqaaOGaeyicI4 SaamisamaaCaaaleqabaGaaGymaiaai+cacaaIYaaaaOGaaGikaiab fo5ahnaaBaaaleaacaWGebaabeaakiaaiMcaaaa@3CE2@ .

В дополнение к (56) положим φ d = φ 1 d φ 2 d MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqOXdO2aaWbaaSqabeaacaWGKbaaaOGaaGypai abeA8aQnaaDaaaleaacaaIXaaabaGaamizaaaakiabgkHiTiabeA8a QnaaDaaaleaacaaIYaaabaGaamizaaaaaaa@3D56@ . В случае задачи (71) справедливо равенство

  I φ ( φ 1 ) I ˜ φ ( φ 2 ),φ=2(φ φ d ,φ ) Q =2(φ Q 2 (φ, φ d ) Q ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeyykJeUabmysayaafaWaaSbaaSqaaiabeA8aQb qabaGccaaIOaGaeqOXdO2aaSbaaSqaaiaaigdaaeqaaOGaaGykaiab gkHiTiqadMeagaacgaqbamaaBaaaleaacqaHgpGAaeqaaOGaaGikai abeA8aQnaaBaaaleaacaaIYaaabeaakiaaiMcacaaISaGaeqOXdOMa eyOkJeVaaGypaiaaikdacaaIOaGaeqOXdOMaeyOeI0IaeqOXdO2aaW baaSqabeaacaWGKbaaaOGaaGilaiabeA8aQjaaiMcadaWgaaWcbaGa amyuaaqabaGccaaI9aGaaGOmaiaaiIcarqqr1ngBPrgifHhDYfgaiq aacqWFLicucqaHgpGAcqWFLicudaqhaaWcbaGaamyuaaqaaiaaikda aaGccqGHsislcaaIOaGaeqOXdOMaaGilaiabeA8aQnaaCaaaleqaba GaamizaaaakiaaiMcadaWgaaWcbaGaamyuaaqabaGccaaIPaGaaGOl aaaa@68E5@ (72)

С учетом (72) неравенство (57) и соотношения (55), (19) для множителей Лагранжа θ i , ζ i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqiUde3aaSbaaSqaaiaadMgaaeqaaOGaaGilai abeA7a6naaBaaaleaacaWGPbaabeaaaaa@3805@ , отвечающих решениям ( φ i , λ i , α i ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikaiabeA8aQnaaBaaaleaacaWGPbaabeaaki aaiYcacqaH7oaBdaWgaaWcbaGaamyAaaqabaGccaaISaGaeqySde2a aSbaaSqaaiaadMgaaeqaaOGaaGykaaaa@3CEB@ , i=1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamyAaiaai2dacaaIXaGaaGilaiaaikdaaaa@3580@ , принимают следующий вид:

μ 0 (φ Q 2 (φ, φ d ) Q )+ ζ,ψ Γ D + μ 1 λ s,Ω 2 + μ 2 α Γ N 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqiVd02aaSbaaSqaaiaaicdaaeqaaOGaaGikae bbfv3ySLgzGueE0jxyaGabaiab=vIiqjabeA8aQjab=vIiqnaaDaaa leaacaWGrbaabaGaaGOmaaaakiabgkHiTiaaiIcacqaHgpGAcaaISa GaeqOXdO2aaWbaaSqabeaacaWGKbaaaOGaaGykamaaBaaaleaacaWG rbaabeaakiaaiMcacqGHRaWkcqGHPms4cqaH2oGEcaaISaGaeqiYdK NaeyOkJe=aaSbaaSqaaiabfo5ahnaaBaaabaGaamiraaqabaaabeaa kiabgUcaRiabeY7aTnaaBaaaleaacaaIXaaabeaakiab=vIiqjabeU 7aSjab=vIiqnaaDaaaleaacaWGZbGaaGilaiabfM6axbqaaiaaikda aaGccqGHRaWkcqaH8oqBdaWgaaWcbaGaaGOmaaqabaGccqWFLicucq aHXoqycqWFLicudaqhaaWcbaGaeu4KdC0aaSbaaeaacaWGobaabeaa aeaacaaIYaaaaOGaeyizImkaaa@6BE7@

  Aκ(( k 1 φ,θ)+5( k 2 φ 2 , θ 2 ))(λφ,( θ 1 + θ 2 )) (λα, φ 1 θ 1 + φ 2 θ 2 ) Γ N , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamyqaiabggMi6kabgkHiTiabeQ7aRjaaiIcaca aIOaGaam4AamaaBaaaleaacaaIXaaabeaakiabeA8aQjaaiYcacqaH 4oqCcaaIPaGaey4kaSIaaGynaiaaiIcacaWGRbWaaSbaaSqaaiaaik daaeqaaOGaeqOXdO2aaWbaaSqabeaacaaIYaaaaOGaaGilaiabeI7a XnaaBaaaleaacaaIYaaabeaakiaaiMcacaaIPaGaeyOeI0IaaGikai abeU7aSjabgEGirlabeA8aQjaaiYcacqGHhis0caaIOaGaeqiUde3a aSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeqiUde3aaSbaaSqaaiaaik daaeqaaOGaaGykaiaaiMcacqGHsislcaaIOaGaeq4UdWMaeqySdeMa aGilaiabeA8aQnaaBaaaleaacaaIXaaabeaakiabeI7aXnaaBaaale aacaaIXaaabeaakiabgUcaRiabeA8aQnaaBaaaleaacaaIYaaabeaa kiabeI7aXnaaBaaaleaacaaIYaaabeaakiaaiMcadaWgaaWcbaGaeu 4KdC0aaSbaaeaacaWGobaabeaaaeqaaOGaaGilaaaa@70E2@ (73)

( λ i τ, θ i )+5κ( φ i 4 τ, θ i )+ ( λ i α i τ, θ i ) Γ N + ζ i ,h Γ D = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikaiabeU7aSnaaBaaaleaacaWGPbaabeaaki abgEGirlabes8a0jaaiYcacqGHhis0cqaH4oqCdaWgaaWcbaGaamyA aaqabaGccaaIPaGaey4kaSIaaGynaiabeQ7aRjaaiIcacqaHgpGAda qhaaWcbaGaamyAaaqaaiaaisdaaaGccqaHepaDcaaISaGaeqiUde3a aSbaaSqaaiaadMgaaeqaaOGaaGykaiabgUcaRiaaiIcacqaH7oaBda WgaaWcbaGaamyAaaqabaGccqaHXoqydaWgaaWcbaGaamyAaaqabaGc cqaHepaDcaaISaGaeqiUde3aaSbaaSqaaiaadMgaaeqaaOGaaGykam aaBaaaleaacqqHtoWrdaWgaaqaaiaad6eaaeqaaaqabaGccqGHRaWk cqGHPms4cqaH2oGEdaWgaaWcbaGaamyAaaqabaGccaaISaGaamiAai abgQYiXpaaBaaaleaacqqHtoWrdaWgaaqaaiaadseaaeqaaaqabaGc caaI9aaaaa@67EA@

  = μ 0 ( φ i φ i d ,τ) Q τ H 1 (Ω). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGypaiabgkHiTiabeY7aTnaaBaaaleaacaaIWa aabeaakiaaiIcacqaHgpGAdaWgaaWcbaGaamyAaaqabaGccqGHsisl cqaHgpGAdaqhaaWcbaGaamyAaaqaaiaadsgaaaGccaaISaGaeqiXdq NaaGykamaaBaaaleaacaWGrbaabeaakiaaysW7caaMe8UaeyiaIiIa eqiXdqNaeyicI4SaamisamaaCaaaleqabaGaaGymaaaakiaaiIcacq qHPoWvcaaIPaGaaGOlaaaa@4F1A@   (74)

Справедлива оценка

  |( φ i φ i d , θ i ) Q | M φ 0 θ i 1,Ω , M φ 0 M φ +max( φ 1 d Q , φ 2 d Q ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGiFaiaaiIcacqaHgpGAdaWgaaWcbaGaamyAaa qabaGccqGHsislcqaHgpGAdaqhaaWcbaGaamyAaaqaaiaadsgaaaGc caaISaGaeqiUde3aaSbaaSqaaiaadMgaaeqaaOGaaGykamaaBaaale aacaWGrbaabeaakiaaiYhacqGHKjYOcaWGnbWaa0baaSqaaiabeA8a QbqaaiaaicdaaaqeeuuDJXwAKbsr4rNCHbaceaGccqWFLicucqaH4o qCdaWgaaWcbaGaamyAaaqabaGccqWFLicudaWgaaWcbaGaaGymaiaa iYcacqqHPoWvaeqaaOGaaGilaiaaysW7caWGnbWaa0baaSqaaiabeA 8aQbqaaiaaicdaaaGccqGHHjIUcaWGnbWaaSbaaSqaaiabeA8aQbqa baGccqGHRaWkciGGTbGaaiyyaiaacIhacaaIOaGae8xjIaLaeqOXdO 2aa0baaSqaaiaaigdaaeaacaWGKbaaaOGae8xjIa1aaSbaaSqaaiaa dgfaaeqaaOGaaGilaiab=vIiqjabeA8aQnaaDaaaleaacaaIYaaaba Gaamizaaaakiab=vIiqnaaBaaaleaacaWGrbaabeaakiaaiMcacaaI Uaaaaa@71EE@ (75)

Полагая τ= θ i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqiXdqNaaGypaiabeI7aXnaaBaaaleaacaWGPb aabeaaaaa@36FA@  в (74), с учетом (75) выводим

  θ i 1,Ω μ 0 C * M φ 0 , C * = λ * 1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaqeeuuDJXwAKbsr4rNCHbaceaGae8xjIaLaeqiUde 3aaSbaaSqaaiaadMgaaeqaaOGae8xjIa1aaSbaaSqaaiaaigdacaaI SaGaeuyQdCfabeaakiabgsMiJkabeY7aTnaaBaaaleaacaaIWaaabe aakiaadoeadaWgaaWcbaGaaGOkaaqabaGccaWGnbWaa0baaSqaaiab eA8aQbqaaiaaicdaaaGccaaISaGaaGjbVlaaysW7caWGdbWaaSbaaS qaaiaaiQcaaeqaaOGaaGypaiabeU7aSnaaDaaaleaacaaIQaaabaGa eyOeI0IaaGymaaaakiaai6caaaa@5355@ (76)

С помощью оценки (70) и неравенств леммы 2.1 оценим слагаемые, входящие в выражение (73) для A, через нормы разностей λ, α и ψ. Начнем со второго слагаемого. С учетом обозначений (62) получим

5|( k 2 φ 2 , θ 2 )|5|( φ 1 + φ 2 )( φ 1 2 + φ 2 2 ) φ 2 , θ 2 )|20 μ 0 C 6 6 C * M φ 3 M φ 0 φ 1,Ω 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGynaiaaiYhacaaIOaGaam4AamaaBaaaleaaca aIYaaabeaakiabeA8aQnaaCaaaleqabaGaaGOmaaaakiaaiYcacqaH 4oqCdaWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGiFaiabgsMiJkaaiw dacaaI8bGaaGikaiabeA8aQnaaBaaaleaacaaIXaaabeaakiabgUca RiabeA8aQnaaBaaaleaacaaIYaaabeaakiaaiMcacaaIOaGaeqOXdO 2aa0baaSqaaiaaigdaaeaacaaIYaaaaOGaey4kaSIaeqOXdO2aa0ba aSqaaiaaikdaaeaacaaIYaaaaOGaaGykaiabeA8aQnaaCaaaleqaba GaaGOmaaaakiaaiYcacqaH4oqCdaWgaaWcbaGaaGOmaaqabaGccaaI PaGaaGiFaiabgsMiJkaaikdacaaIWaGaeqiVd02aaSbaaSqaaiaaic daaeqaaOGaam4qamaaDaaaleaacaaI2aaabaGaaGOnaaaakiaadoea daWgaaWcbaGaaGOkaaqabaGccaWGnbWaa0baaSqaaiabeA8aQbqaai aaiodaaaGccaWGnbWaa0baaSqaaiabeA8aQbqaaiaaicdaaaqeeuuD JXwAKbsr4rNCHbaceaGccqWFLicucqaHgpGAcqWFLicudaqhaaWcba GaaGymaiaaiYcacqqHPoWvaeaacaaIYaaaaOGaeyizImkaaa@78FD@

60 μ 0 C 6 6 C * M φ 3 M φ 0 ( ω 1 2 λ s,Ω 2 + ω 2 2 α Γ N 2 + ω 3 2 ψ 1/2, Γ D 2 ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeyizImQaaGOnaiaaicdacqaH8oqBdaWgaaWcba GaaGimaaqabaGccaWGdbWaa0baaSqaaiaaiAdaaeaacaaI2aaaaOGa am4qamaaBaaaleaacaaIQaaabeaakiaad2eadaqhaaWcbaGaeqOXdO gabaGaaG4maaaakiaad2eadaqhaaWcbaGaeqOXdOgabaGaaGimaaaa kiaaiIcacqaHjpWDdaqhaaWcbaGaaGymaaqaaiaaikdaaaqeeuuDJX wAKbsr4rNCHbaceaGccqWFLicucqaH7oaBcqWFLicudaqhaaWcbaGa am4CaiaaiYcacqqHPoWvaeaacaaIYaaaaOGaey4kaSIaeqyYdC3aa0 baaSqaaiaaikdaaeaacaaIYaaaaOGae8xjIaLaeqySdeMae8xjIa1a a0baaSqaaiabfo5ahnaaBaaabaGaamOtaaqabaaabaGaaGOmaaaaki abgUcaRiabeM8a3naaDaaaleaacaaIZaaabaGaaGOmaaaakiab=vIi qjabeI8a5jab=vIiqnaaDaaaleaacaaIXaGaaG4laiaaikdacaaISa Gaeu4KdC0aaSbaaeaacaWGebaabeaaaeaacaaIYaaaaOGaaGykaiaa iYcaaaa@6F07@

|(λα, φ 1 θ 1 + φ 2 θ 2 ) Γ N | μ 0 γ 2 C * M φ M φ 0 (λ s,Ω 2 +α Γ N 2 ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGiFaiaaiIcacqaH7oaBcqaHXoqycaaISaGaeq OXdO2aaSbaaSqaaiaaigdaaeqaaOGaeqiUde3aaSbaaSqaaiaaigda aeqaaOGaey4kaSIaeqOXdO2aaSbaaSqaaiaaikdaaeqaaOGaeqiUde 3aaSbaaSqaaiaaikdaaeqaaOGaaGykamaaBaaaleaacqqHtoWrdaWg aaqaaiaad6eaaeqaaaqabaGccaaI8bGaeyizImQaeqiVd02aaSbaaS qaaiaaicdaaeqaaOGaeq4SdC2aaSbaaSqaaiaaikdaaeqaaOGaam4q amaaBaaaleaacaaIQaaabeaakiaad2eadaWgaaWcbaGaeqOXdOgabe aakiaad2eadaqhaaWcbaGaeqOXdOgabaGaaGimaaaakiaaiIcarqqr 1ngBPrgifHhDYfgaiqaacqWFLicucqaH7oaBcqWFLicudaqhaaWcba Gaam4CaiaaiYcacqqHPoWvaeaacaaIYaaaaOGaey4kaSIae8xjIaLa eqySdeMae8xjIa1aa0baaSqaaiabfo5ahnaaBaaabaGaamOtaaqaba aabaGaaGOmaaaakiaaiMcacaaISaaaaa@6CFC@

|(λφ,( θ 1 + θ 2 ))|2 μ 0 C 1 C * M φ 0 λ s,Ω ( ω 1 λ s,Ω + ω 2 α Γ N + ω 3 ψ 1/2, Γ D ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGiFaiaaiIcacqaH7oaBcqGHhis0cqaHgpGAca aISaGaey4bIeTaaGikaiabeI7aXnaaBaaaleaacaaIXaaabeaakiab gUcaRiabeI7aXnaaBaaaleaacaaIYaaabeaakiaaiMcacaaIPaGaaG iFaiabgsMiJkaaikdacqaH8oqBdaWgaaWcbaGaaGimaaqabaGccaWG dbWaaSbaaSqaaiaaigdaaeqaaOGaam4qamaaBaaaleaacaaIQaaabe aakiaad2eadaqhaaWcbaGaeqOXdOgabaGaaGimaaaarqqr1ngBPrgi fHhDYfgaiqaakiab=vIiqjabeU7aSjab=vIiqnaaBaaaleaacaWGZb GaaGilaiabfM6axbqabaGccaaIOaGaeqyYdC3aaSbaaSqaaiaaigda aeqaaOGae8xjIaLaeq4UdWMae8xjIa1aaSbaaSqaaiaadohacaaISa GaeuyQdCfabeaakiabgUcaRiabeM8a3naaBaaaleaacaaIYaaabeaa kiab=vIiqjabeg7aHjab=vIiqnaaBaaaleaacqqHtoWrdaWgaaqaai aad6eaaeqaaaqabaGccqGHRaWkcqaHjpWDdaWgaaWcbaGaaG4maaqa baGccqWFLicucqaHipqEcqWFLicudaWgaaWcbaGaaGymaiaai+caca aIYaGaaGilaiabfo5ahnaaBaaabaGaamiraaqabaaabeaakiaaiMca cqGHKjYOaaa@8029@

  μ 0 C 1 C * M φ 0 [(2 ω 1 + ω 2 + ω 3 )λ s,Ω 2 + ω 2 α Γ N 2 + ω 3 ψ 1/2, Γ D 2 ]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeyizImQaeqiVd02aaSbaaSqaaiaaicdaaeqaaO Gaam4qamaaBaaaleaacaaIXaaabeaakiaadoeadaWgaaWcbaGaaGOk aaqabaGccaWGnbWaa0baaSqaaiabeA8aQbqaaiaaicdaaaGccaaIBb GaaGikaiaaikdacqaHjpWDdaWgaaWcbaGaaGymaaqabaGccqGHRaWk cqaHjpWDdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcqaHjpWDdaWgaa WcbaGaaG4maaqabaGccaaIPaqeeuuDJXwAKbsr4rNCHbaceaGae8xj IaLaeq4UdWMae8xjIa1aa0baaSqaaiaadohacaaISaGaeuyQdCfaba GaaGOmaaaakiabgUcaRiabeM8a3naaBaaaleaacaaIYaaabeaakiab =vIiqjabeg7aHjab=vIiqnaaDaaaleaacqqHtoWrdaWgaaqaaiaad6 eaaeqaaaqaaiaaikdaaaGccqGHRaWkcqaHjpWDdaWgaaWcbaGaaG4m aaqabaGccqWFLicucqaHipqEcqWFLicudaqhaaWcbaGaaGymaiaai+ cacaaIYaGaaGilaiabfo5ahnaaBaaabaGaamiraaqabaaabaGaaGOm aaaakiaai2facaaIUaaaaa@70DA@ (77)

Далее выведем аналогичную оценку для первого слагаемого в выражении для A, оценив норму разности θ= θ 1 θ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqiUdeNaaGypaiabeI7aXnaaBaaaleaacaaIXa aabeaakiabgkHiTiabeI7aXnaaBaaaleaacaaIYaaabeaaaaa@3A4D@  через нормы разностей λ, α и ψ.

Положим далее τ=θ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqiXdqNaaGypaiabeI7aXbaa@35E0@  в соотношении (60), записанном для I 1 (φ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamysamaaBaaaleaacaaIXaaabeaakiaaiIcacq aHgpGAcaaIPaaaaa@367F@ . Получим

( λ 2 θ,θ)+5κ( φ 1 4 θ,θ)+ ( v 2 θ,θ) Γ N = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikaiabeU7aSnaaBaaaleaacaaIYaaabeaaki abgEGirlabeI7aXjaaiYcacqGHhis0cqaH4oqCcaaIPaGaey4kaSIa aGynaiabeQ7aRjaaiIcacqaHgpGAdaqhaaWcbaGaaGymaaqaaiaais daaaGccqaH4oqCcaaISaGaeqiUdeNaaGykaiabgUcaRiaaiIcacaWG 2bWaaSbaaSqaaiaaikdaaeqaaOGaeqiUdeNaaGilaiabeI7aXjaaiM cadaWgaaWcbaGaeu4KdC0aaSbaaeaacaWGobaabeaaaeqaaOGaaGyp aaaa@54CD@

  =(λθ, θ 1 )5κ(( φ 1 4 φ 2 4 )θ, θ 2 ) (vθ, θ 1 ) Γ N μ 0 (φ φ d ,θ) Q . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGypaiabgkHiTiaaiIcacqaH7oaBcqGHhis0cq aH4oqCcaaISaGaey4bIeTaeqiUde3aaSbaaSqaaiaaigdaaeqaaOGa aGykaiabgkHiTiaaiwdacqaH6oWAcaaIOaGaaGikaiabeA8aQnaaDa aaleaacaaIXaaabaGaaGinaaaakiabgkHiTiabeA8aQnaaDaaaleaa caaIYaaabaGaaGinaaaakiaaiMcacqaH4oqCcaaISaGaeqiUde3aaS baaSqaaiaaikdaaeqaaOGaaGykaiabgkHiTiaaiIcacaWG2bGaeqiU deNaaGilaiabeI7aXnaaBaaaleaacaaIXaaabeaakiaaiMcadaWgaa WcbaGaeu4KdC0aaSbaaeaacaWGobaabeaaaeqaaOGaeyOeI0IaeqiV d02aaSbaaSqaaiaaicdaaeqaaOGaaGikaiabeA8aQjabgkHiTiabeA 8aQnaaCaaaleqabaGaamizaaaakiaaiYcacqaH4oqCcaaIPaWaaSba aSqaaiaadgfaaeqaaOGaaGOlaaaa@6B2F@ (78)

Учитывая, что

v= λ 1 α 1 λ 2 α 2 =λ α 1 +α λ 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamODaiaai2dacqaH7oaBdaWgaaWcbaGaaGymaa qabaGccqaHXoqydaWgaaWcbaGaaGymaaqabaGccqGHsislcqaH7oaB daWgaaWcbaGaaGOmaaqabaGccqaHXoqydaWgaaWcbaGaaGOmaaqaba GccaaI9aGaeq4UdWMaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaey4k aSIaeqySdeMaeq4UdW2aaSbaaSqaaiaaikdaaeqaaOGaaGilaaaa@49A1@

из (78) приходим к неравенству

λ * θ 1,Ω μ 0 C 1 C * M φ 0 λ s,Ω + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeq4UdW2aaSbaaSqaaiaaiQcaaeqaaebbfv3ySL gzGueE0jxyaGabaOGae8xjIaLaeqiUdeNae8xjIa1aaSbaaSqaaiaa igdacaaISaGaeuyQdCfabeaakiabgsMiJkabeY7aTnaaBaaaleaaca aIWaaabeaakiaadoeadaWgaaWcbaGaaGymaaqabaGccaWGdbWaaSba aSqaaiaaiQcaaeqaaOGaamytamaaDaaaleaacqaHgpGAaeaacaaIWa aaaOGae8xjIaLaeq4UdWMae8xjIa1aaSbaaSqaaiaadohacaaISaGa euyQdCfabeaakiabgUcaRaaa@5380@

+20 μ 0 κ C 6 6 M φ C * M φ 0 φ 1,Ω + μ 0 γ 2 C * M φ 0 ( C α λ s,Ω + C λ α Γ N )+ μ 0 ( C 2 φ 1,Ω + φ d Q ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaey4kaSIaaGOmaiaaicdacqaH8oqBdaWgaaWcba GaaGimaaqabaGccqaH6oWAcaWGdbWaa0baaSqaaiaaiAdaaeaacaaI 2aaaaOGaamytamaaBaaaleaacqaHgpGAaeqaaOGaam4qamaaBaaale aacaaIQaaabeaakiaad2eadaqhaaWcbaGaeqOXdOgabaGaaGimaaaa rqqr1ngBPrgifHhDYfgaiqaakiab=vIiqjabeA8aQjab=vIiqnaaBa aaleaacaaIXaGaaGilaiabfM6axbqabaGccqGHRaWkcqaH8oqBdaWg aaWcbaGaaGimaaqabaGccqaHZoWzdaWgaaWcbaGaaGOmaaqabaGcca WGdbWaaSbaaSqaaiaaiQcaaeqaaOGaamytamaaDaaaleaacqaHgpGA aeaacaaIWaaaaOGaaGikaiaadoeadaWgaaWcbaGaeqySdegabeaaki ab=vIiqjabeU7aSjab=vIiqnaaBaaaleaacaWGZbGaaGilaiabfM6a xbqabaGccqGHRaWkcaWGdbWaaSbaaSqaaiabeU7aSbqabaGccqWFLi cucqaHXoqycqWFLicudaWgaaWcbaGaeu4KdC0aaSbaaeaacaWGobaa beaaaeqaaOGaaGykaiabgUcaRiabeY7aTnaaBaaaleaacaaIWaaabe aakiaaiIcacaWGdbWaaSbaaSqaaiaaikdaaeqaaOGae8xjIaLaeqOX dOMae8xjIa1aaSbaaSqaaiaaigdacaaISaGaeuyQdCfabeaakiabgU caRiab=vIiqjabeA8aQnaaCaaaleqabaGaamizaaaakiab=vIiqnaa BaaaleaacaWGrbaabeaakiaaiMcacqGHKjYOaaa@85C2@

   μ 0 [(20κ C 6 6 C * M φ M φ 0 + C 2 )φ 1,Ω + C * M φ 0 ( C 1 + γ 2 C α )λ s,Ω + γ 2 C * M φ 0 C λ α Γ N + φ d Q ]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeyizImQaeqiVd02aaSbaaSqaaiaaicdaaeqaaO GaaG4waiaaiIcacaaIYaGaaGimaiabeQ7aRjaadoeadaqhaaWcbaGa aGOnaaqaaiaaiAdaaaGccaWGdbWaaSbaaSqaaiaaiQcaaeqaaOGaam ytamaaBaaaleaacqaHgpGAaeqaaOGaamytamaaDaaaleaacqaHgpGA aeaacaaIWaaaaOGaey4kaSIaam4qamaaBaaaleaacaaIYaaabeaaki aaiMcarqqr1ngBPrgifHhDYfgaiqaacqWFLicucqaHgpGAcqWFLicu daWgaaWcbaGaaGymaiaaiYcacqqHPoWvaeqaaOGaey4kaSIaam4qam aaBaaaleaacaaIQaaabeaakiaad2eadaqhaaWcbaGaeqOXdOgabaGa aGimaaaakiaaiIcacaWGdbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaS Iaeq4SdC2aaSbaaSqaaiaaikdaaeqaaOGaam4qamaaBaaaleaacqaH XoqyaeqaaOGaaGykaiab=vIiqjabeU7aSjab=vIiqnaaBaaaleaaca WGZbGaaGilaiabfM6axbqabaGccqGHRaWkcqaHZoWzdaWgaaWcbaGa aGOmaaqabaGccaWGdbWaaSbaaSqaaiaaiQcaaeqaaOGaamytamaaDa aaleaacqaHgpGAaeaacaaIWaaaaOGaam4qamaaBaaaleaacqaH7oaB aeqaaOGae8xjIaLaeqySdeMae8xjIa1aaSbaaSqaaiabfo5ahnaaBa aabaGaamOtaaqabaaabeaakiabgUcaRiab=vIiqjabeA8aQnaaCaaa leqabaGaamizaaaakiab=vIiqnaaBaaaleaacaWGrbaabeaakiaai2 facaaIUaaaaa@8554@

С учетом неравенства (70) из (79) получаем следующую оценку для θ 1,Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaqeeuuDJXwAKbsr4rNCHbaceaGae8xjIaLaeqiUde Nae8xjIa1aaSbaaSqaaiaaigdacaaISaGaeuyQdCfabeaaaaa@3D52@ :

  θ 1,Ω μ 0 ( κ 1 λ s,Ω + κ 2 α Γ N + κ 3 ψ 1/2, Γ D + κ 4 φ d Q ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaqeeuuDJXwAKbsr4rNCHbaceaGae8xjIaLaeqiUde Nae8xjIa1aaSbaaSqaaiaaigdacaaISaGaeuyQdCfabeaakiabgsMi JkabeY7aTnaaBaaaleaacaaIWaaabeaakiaaiIcacqaH6oWAdaWgaa WcbaGaaGymaaqabaGccqWFLicucqaH7oaBcqWFLicudaWgaaWcbaGa am4CaiaaiYcacqqHPoWvaeqaaOGaey4kaSIaeqOUdS2aaSbaaSqaai aaikdaaeqaaOGae8xjIaLaeqySdeMae8xjIa1aaSbaaSqaaiabfo5a hnaaBaaabaGaamOtaaqabaaabeaakiabgUcaRiabeQ7aRnaaBaaale aacaaIZaaabeaakiab=vIiqjabeI8a5jab=vIiqnaaBaaaleaacaaI XaGaaG4laiaaikdacaaISaGaeu4KdC0aaSbaaeaacaWGebaabeaaae qaaOGaey4kaSIaeqOUdS2aaSbaaSqaaiaaisdaaeqaaOGae8xjIaLa eqOXdO2aaWbaaSqabeaacaWGKbaaaOGae8xjIa1aaSbaaSqaaiaadg faaeqaaOGaaGykaiaai6caaaa@6E68@ (80)

Здесь

κ 1 = C * [(20κ C 6 6 C * M φ M φ 0 + C 2 ) ω 1 + C * M φ 0 ( C 1 + γ 2 C α )], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqOUdS2aaSbaaSqaaiaaigdaaeqaaOGaaGypai aadoeadaWgaaWcbaGaaGOkaaqabaGccaaIBbGaaGikaiaaikdacaaI WaGaeqOUdSMaam4qamaaDaaaleaacaaI2aaabaGaaGOnaaaakiaado eadaWgaaWcbaGaaGOkaaqabaGccaWGnbWaaSbaaSqaaiabeA8aQbqa baGccaWGnbWaa0baaSqaaiabeA8aQbqaaiaaicdaaaGccqGHRaWkca WGdbWaaSbaaSqaaiaaikdaaeqaaOGaaGykaiabeM8a3naaBaaaleaa caaIXaaabeaakiabgUcaRiaadoeadaWgaaWcbaGaaGOkaaqabaGcca WGnbWaa0baaSqaaiabeA8aQbqaaiaaicdaaaGccaaIOaGaam4qamaa BaaaleaacaaIXaaabeaakiabgUcaRiabeo7aNnaaBaaaleaacaaIYa aabeaakiaadoeadaWgaaWcbaGaeqySdegabeaakiaaiMcacaaIDbGa aGilaaaa@5CE3@

κ 2 = C * [(20κ C 6 6 C * M φ M φ 0 + C 2 ) ω 2 + γ 2 C * M φ 0 C λ ], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqOUdS2aaSbaaSqaaiaaikdaaeqaaOGaaGypai aadoeadaWgaaWcbaGaaGOkaaqabaGccaaIBbGaaGikaiaaikdacaaI WaGaeqOUdSMaam4qamaaDaaaleaacaaI2aaabaGaaGOnaaaakiaado eadaWgaaWcbaGaaGOkaaqabaGccaWGnbWaaSbaaSqaaiabeA8aQbqa baGccaWGnbWaa0baaSqaaiabeA8aQbqaaiaaicdaaaGccqGHRaWkca WGdbWaaSbaaSqaaiaaikdaaeqaaOGaaGykaiabeM8a3naaBaaaleaa caaIYaaabeaakiabgUcaRiabeo7aNnaaBaaaleaacaaIYaaabeaaki aadoeadaWgaaWcbaGaaGOkaaqabaGccaWGnbWaa0baaSqaaiabeA8a QbqaaiaaicdaaaGccaWGdbWaaSbaaSqaaiabeU7aSbqabaGccaaIDb GaaGilaaaa@58FA@

  κ 3 = C * (20κ C 6 6 C * M φ M φ 0 + C 2 ) ω 3 , κ 4 = C * . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqOUdS2aaSbaaSqaaiaaiodaaeqaaOGaaGypai aadoeadaWgaaWcbaGaaGOkaaqabaGccaaIOaGaaGOmaiaaicdacqaH 6oWAcaWGdbWaa0baaSqaaiaaiAdaaeaacaaI2aaaaOGaam4qamaaBa aaleaacaaIQaaabeaakiaad2eadaWgaaWcbaGaeqOXdOgabeaakiaa d2eadaqhaaWcbaGaeqOXdOgabaGaaGimaaaakiabgUcaRiaadoeada WgaaWcbaGaaGOmaaqabaGccaaIPaGaeqyYdC3aaSbaaSqaaiaaioda aeqaaOGaaGilaiaaysW7caaMe8UaeqOUdS2aaSbaaSqaaiaaisdaae qaaOGaaGypaiaadoeadaWgaaWcbaGaaGOkaaqabaGccaaIUaaaaa@54C2@ (81)

Наконец, используя (80), с учетом обозначений (62) мы можем оценить первое слагаемое в выражении для A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamyqaaaa@3264@  в (73):

|( k 1 φ,θ)||((4 φ 1 4 φ 1 3 φ 2 φ 1 2 φ 2 2 φ 1 φ 2 3 φ 2 4 )φ,θ)| MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGiFaiaaiIcacaWGRbWaaSbaaSqaaiaaigdaae qaaOGaeqOXdOMaaGilaiabeI7aXjaaiMcacaaI8bGaeyizImQaaGiF aiaaiIcacaaIOaGaaGinaiabeA8aQnaaDaaaleaacaaIXaaabaGaaG inaaaakiabgkHiTiabeA8aQnaaDaaaleaacaaIXaaabaGaaG4maaaa kiabeA8aQnaaBaaaleaacaaIYaaabeaakiabgkHiTiabeA8aQnaaDa aaleaacaaIXaaabaGaaGOmaaaakiabeA8aQnaaDaaaleaacaaIYaaa baGaaGOmaaaakiabgkHiTiabeA8aQnaaBaaaleaacaaIXaaabeaaki abeA8aQnaaDaaaleaacaaIYaaabaGaaG4maaaakiabgkHiTiabeA8a QnaaDaaaleaacaaIYaaabaGaaGinaaaakiaaiMcacqaHgpGAcaaISa GaeqiUdeNaaGykaiaaiYhacqGHKjYOaaa@65DC@

8 μ 0 C 6 6 M φ 4 ( ω 1 λ s,Ω + ω 2 α Γ N + ω 3 ψ 1/2, Γ D )( κ 1 λ s,Ω + κ 2 α Γ N + κ 3 ψ 1/2, Γ D + κ 4 φ d Q ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGioaiabeY7aTnaaBaaaleaacaaIWaaabeaaki aadoeadaqhaaWcbaGaaGOnaaqaaiaaiAdaaaGccaWGnbWaa0baaSqa aiabeA8aQbqaaiaaisdaaaGccaaIOaGaeqyYdC3aaSbaaSqaaiaaig daaeqaaebbfv3ySLgzGueE0jxyaGabaOGae8xjIaLaeq4UdWMae8xj Ia1aaSbaaSqaaiaadohacaaISaGaeuyQdCfabeaakiabgUcaRiabeM 8a3naaBaaaleaacaaIYaaabeaakiab=vIiqjabeg7aHjab=vIiqnaa BaaaleaacqqHtoWrdaWgaaqaaiaad6eaaeqaaaqabaGccqGHRaWkcq aHjpWDdaWgaaWcbaGaaG4maaqabaGccqWFLicucqaHipqEcqWFLicu daWgaaWcbaGaaGymaiaai+cacaaIYaGaaGilaiabfo5ahnaaBaaaba GaamiraaqabaaabeaakiaaiMcacaaIOaGaeqOUdS2aaSbaaSqaaiaa igdaaeqaaOGae8xjIaLaeq4UdWMae8xjIa1aaSbaaSqaaiaadohaca aISaGaeuyQdCfabeaakiabgUcaRiabeQ7aRnaaBaaaleaacaaIYaaa beaakiab=vIiqjabeg7aHjab=vIiqnaaBaaaleaacqqHtoWrdaWgaa qaaiaad6eaaeqaaaqabaGccqGHRaWkcqaH6oWAdaWgaaWcbaGaaG4m aaqabaGccqWFLicucqaHipqEcqWFLicudaWgaaWcbaGaaGymaiaai+ cacaaIYaGaaGilaiabfo5ahnaaBaaabaGaamiraaqabaaabeaakiab gUcaRiabeQ7aRnaaBaaaleaacaaI0aaabeaakiab=vIiqjabeA8aQn aaCaaaleqabaGaamizaaaakiab=vIiqnaaBaaaleaacaWGrbaabeaa kiaaiMcacqGHKjYOaaa@8FF3@

8 μ 0 C 6 6 M φ 4 [( ω 1 κ 1 +1.5 ω 1 2 + κ 1 2 )λ s,Ω 2 +( ω 2 κ 2 +1.5 ω 2 2 + κ 2 2 )α Γ N 2 ]+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeyizImQaaGioaiabeY7aTnaaBaaaleaacaaIWa aabeaakiaadoeadaqhaaWcbaGaaGOnaaqaaiaaiAdaaaGccaWGnbWa a0baaSqaaiabeA8aQbqaaiaaisdaaaGccaaIBbGaaGikaiabeM8a3n aaBaaaleaacaaIXaaabeaakiabeQ7aRnaaBaaaleaacaaIXaaabeaa kiabgUcaRiaaigdacaaIUaGaaGynaiabeM8a3naaDaaaleaacaaIXa aabaGaaGOmaaaakiabgUcaRiabeQ7aRnaaDaaaleaacaaIXaaabaGa aGOmaaaakiaaiMcarqqr1ngBPrgifHhDYfgaiqaacqWFLicucqaH7o aBcqWFLicudaqhaaWcbaGaam4CaiaaiYcacqqHPoWvaeaacaaIYaaa aOGaey4kaSIaaGikaiabeM8a3naaBaaaleaacaaIYaaabeaakiabeQ 7aRnaaBaaaleaacaaIYaaabeaakiabgUcaRiaaigdacaaIUaGaaGyn aiabeM8a3naaDaaaleaacaaIYaaabaGaaGOmaaaakiabgUcaRiabeQ 7aRnaaDaaaleaacaaIYaaabaGaaGOmaaaakiaaiMcacqWFLicucqaH XoqycqWFLicudaqhaaWcbaGaeu4KdC0aaSbaaeaacaWGobaabeaaae aacaaIYaaaaOGaaGyxaiabgUcaRaaa@775C@

  +8 μ 0 C 6 6 M φ 4 [( ω 3 κ 3 +1.5 ω 3 2 + κ 3 2 )ψ 1/2, Γ D 2 +1.5 κ 4 2 φ d Q 2 ]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaey4kaSIaaGioaiabeY7aTnaaBaaaleaacaaIWa aabeaakiaadoeadaqhaaWcbaGaaGOnaaqaaiaaiAdaaaGccaWGnbWa a0baaSqaaiabeA8aQbqaaiaaisdaaaGccaaIBbGaaGikaiabeM8a3n aaBaaaleaacaaIZaaabeaakiabeQ7aRnaaBaaaleaacaaIZaaabeaa kiabgUcaRiaaigdacaaIUaGaaGynaiabeM8a3naaDaaaleaacaaIZa aabaGaaGOmaaaakiabgUcaRiabeQ7aRnaaDaaaleaacaaIZaaabaGa aGOmaaaakiaaiMcarqqr1ngBPrgifHhDYfgaiqaacqWFLicucqaHip qEcqWFLicudaqhaaWcbaGaaGymaiaai+cacaaIYaGaaGilaiabfo5a hnaaBaaabaGaamiraaqabaaabaGaaGOmaaaakiabgUcaRiaaigdaca aIUaGaaGynaiabeQ7aRnaaDaaaleaacaaI0aaabaGaaGOmaaaakiab =vIiqjabeA8aQnaaCaaaleqabaGaamizaaaakiab=vIiqnaaDaaale aacaWGrbaabaGaaGOmaaaakiaai2facaaIUaaaaa@6C2F@   (82)

С учетом (77) и (82) для A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamyqaaaa@3264@  из (73) получаем оценку

  |A| μ 0 ( η 1 2 λ s,Ω 2 + η 2 2 α Γ N 2 + η 3 2 ψ 1/2, Γ D 2 + η 4 2 φ d Q 2 ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGiFaiaadgeacaaI8bGaeyizImQaeqiVd02aaS baaSqaaiaaicdaaeqaaOGaaGikaiabeE7aOnaaDaaaleaacaaIXaaa baGaaGOmaaaarqqr1ngBPrgifHhDYfgaiqaakiab=vIiqjabeU7aSj ab=vIiqnaaDaaaleaacaWGZbGaaGilaiabfM6axbqaaiaaikdaaaGc cqGHRaWkcqaH3oaAdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccqWFLi cucqaHXoqycqWFLicudaqhaaWcbaGaeu4KdC0aaSbaaeaacaWGobaa beaaaeaacaaIYaaaaOGaey4kaSIaeq4TdG2aa0baaSqaaiaaiodaae aacaaIYaaaaOGae8xjIaLaeqiYdKNae8xjIa1aa0baaSqaaiaaigda caaIVaGaaGOmaiaaiYcacqqHtoWrdaWgaaqaaiaadseaaeqaaaqaai aaikdaaaGccqGHRaWkcqaH3oaAdaqhaaWcbaGaaGinaaqaaiaaikda aaGccqWFLicucqaHgpGAdaahaaWcbeqaaiaadsgaaaGccqWFLicuda qhaaWcbaGaamyuaaqaaiaaikdaaaGccaaIPaGaaGOlaaaa@6FE7@ (83)

Здесь положительные константы η 1 , η 2 , η 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeq4TdG2aaSbaaSqaaiaaigdaaeqaaOGaaGilai abeE7aOnaaBaaaleaacaaIYaaabeaakiaaiYcacqaH3oaAdaWgaaWc baGaaG4maaqabaaaaa@3ADA@  и η 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeq4TdG2aaSbaaSqaaiaaisdaaeqaaaaa@3434@ , зависящие от величин M φ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamytamaaBaaaleaacqaHgpGAaeqaaaaa@3459@  и M φ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamytamaaDaaaleaacqaHgpGAaeaacaaIWaaaaa aa@3514@ , определяются следующим образом:

η 1 2 =8κ C 6 6 M φ 3 (7.5 C * M φ 0 ω 1 2 + M φ ( ω 1 κ 1 +1.5 ω 1 2 + κ 1 2 ))+ C * M φ 0 ( γ 2 M φ + C 1 (2 ω 1 + ω 2 + ω 3 )), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeq4TdG2aa0baaSqaaiaaigdaaeaacaaIYaaaaO GaaGypaiaaiIdacqaH6oWAcaWGdbWaa0baaSqaaiaaiAdaaeaacaaI 2aaaaOGaamytamaaDaaaleaacqaHgpGAaeaacaaIZaaaaOGaaGikai aaiEdacaaIUaGaaGynaiaadoeadaWgaaWcbaGaaGOkaaqabaGccaWG nbWaa0baaSqaaiabeA8aQbqaaiaaicdaaaGccqaHjpWDdaqhaaWcba GaaGymaaqaaiaaikdaaaGccqGHRaWkcaWGnbWaaSbaaSqaaiabeA8a QbqabaGccaaIOaGaeqyYdC3aaSbaaSqaaiaaigdaaeqaaOGaeqOUdS 2aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaaGymaiaai6cacaaI1aGa eqyYdC3aa0baaSqaaiaaigdaaeaacaaIYaaaaOGaey4kaSIaeqOUdS 2aa0baaSqaaiaaigdaaeaacaaIYaaaaOGaaGykaiaaiMcacqGHRaWk caWGdbWaaSbaaSqaaiaaiQcaaeqaaOGaamytamaaDaaaleaacqaHgp GAaeaacaaIWaaaaOGaaGikaiabeo7aNnaaBaaaleaacaaIYaaabeaa kiaad2eadaWgaaWcbaGaeqOXdOgabeaakiabgUcaRiaadoeadaWgaa WcbaGaaGymaaqabaGccaaIOaGaaGOmaiabeM8a3naaBaaaleaacaaI XaaabeaakiabgUcaRiabeM8a3naaBaaaleaacaaIYaaabeaakiabgU caRiabeM8a3naaBaaaleaacaaIZaaabeaakiaaiMcacaaIPaGaaGil aaaa@7C07@

η 2 2 =8κ C 6 6 M φ 3 (7.5 C * M φ 0 ω 2 2 + M φ ( ω 2 κ 2 +1.5 ω 2 2 + κ 2 2 ))+ C * M φ 0 ( γ 2 M φ + C 1 ω 2 ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeq4TdG2aa0baaSqaaiaaikdaaeaacaaIYaaaaO GaaGypaiaaiIdacqaH6oWAcaWGdbWaa0baaSqaaiaaiAdaaeaacaaI 2aaaaOGaamytamaaDaaaleaacqaHgpGAaeaacaaIZaaaaOGaaGikai aaiEdacaaIUaGaaGynaiaadoeadaWgaaWcbaGaaGOkaaqabaGccaWG nbWaa0baaSqaaiabeA8aQbqaaiaaicdaaaGccqaHjpWDdaqhaaWcba GaaGOmaaqaaiaaikdaaaGccqGHRaWkcaWGnbWaaSbaaSqaaiabeA8a QbqabaGccaaIOaGaeqyYdC3aaSbaaSqaaiaaikdaaeqaaOGaeqOUdS 2aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaaGymaiaai6cacaaI1aGa eqyYdC3aa0baaSqaaiaaikdaaeaacaaIYaaaaOGaey4kaSIaeqOUdS 2aa0baaSqaaiaaikdaaeaacaaIYaaaaOGaaGykaiaaiMcacqGHRaWk caWGdbWaaSbaaSqaaiaaiQcaaeqaaOGaamytamaaDaaaleaacqaHgp GAaeaacaaIWaaaaOGaaGikaiabeo7aNnaaBaaaleaacaaIYaaabeaa kiaad2eadaWgaaWcbaGaeqOXdOgabeaakiabgUcaRiaadoeadaWgaa WcbaGaaGymaaqabaGccqaHjpWDdaWgaaWcbaGaaGOmaaqabaGccaaI PaGaaGilaaaa@72AA@

  η 3 2 =8κ C 6 6 M φ 3 (7.5 C * M φ 0 ω 3 2 + M φ ( ω 3 κ 3 +1.5 ω 3 2 + κ 3 2 ))+ C 1 C * M φ 0 ω 3 , η 4 2 =12κ C 6 6 M φ 4 κ 4 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeq4TdG2aa0baaSqaaiaaiodaaeaacaaIYaaaaO GaaGypaiaaiIdacqaH6oWAcaWGdbWaa0baaSqaaiaaiAdaaeaacaaI 2aaaaOGaamytamaaDaaaleaacqaHgpGAaeaacaaIZaaaaOGaaGikai aaiEdacaaIUaGaaGynaiaadoeadaWgaaWcbaGaaGOkaaqabaGccaWG nbWaa0baaSqaaiabeA8aQbqaaiaaicdaaaGccqaHjpWDdaqhaaWcba GaaG4maaqaaiaaikdaaaGccqGHRaWkcaWGnbWaaSbaaSqaaiabeA8a QbqabaGccaaIOaGaeqyYdC3aaSbaaSqaaiaaiodaaeqaaOGaeqOUdS 2aaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaaGymaiaai6cacaaI1aGa eqyYdC3aa0baaSqaaiaaiodaaeaacaaIYaaaaOGaey4kaSIaeqOUdS 2aa0baaSqaaiaaiodaaeaacaaIYaaaaOGaaGykaiaaiMcacqGHRaWk caWGdbWaaSbaaSqaaiaaigdaaeqaaOGaam4qamaaBaaaleaacaaIQa aabeaakiaad2eadaqhaaWcbaGaeqOXdOgabaGaaGimaaaakiabeM8a 3naaBaaaleaacaaIZaaabeaakiaaiYcacaaMe8Uaeq4TdG2aa0baaS qaaiaaisdaaeaacaaIYaaaaOGaaGypaiaaigdacaaIYaGaeqOUdSMa am4qamaaDaaaleaacaaI2aaabaGaaGOnaaaakiaad2eadaqhaaWcba GaeqOXdOgabaGaaGinaaaakiabeQ7aRnaaDaaaleaacaaI0aaabaGa aGOmaaaakiaai6caaaa@7E04@ (84)

Для того чтобы оценить слагаемое ζ,ψ Γ D MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeyykJeUaeqOTdONaaGilaiabeI8a5jabgQYiXp aaBaaaleaacqqHtoWrdaWgaaqaaiaadseaaeqaaaqabaaaaa@3BE0@ , запишем равенство (61) для функционала I 1 (φ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamysamaaBaaaleaacaaIXaaabeaakiaaiIcacq aHgpGAcaaIPaaaaa@367F@  в виде

ζ,ψ Γ D =(λφ, θ 1 )( λ 2 φ,θ)5κ( φ 1 4 φ,θ)5κ(( φ 1 + φ 2 )( φ 1 2 + φ 2 2 ) φ 2 , θ 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeyykJeUaeqOTdONaaGilaiabeI8a5jabgQYiXp aaBaaaleaacqqHtoWrdaWgaaqaaiaadseaaeqaaaqabaGccaaI9aGa eyOeI0IaaGikaiabeU7aSjabgEGirlabeA8aQjaaiYcacqGHhis0cq aH4oqCdaWgaaWcbaGaaGymaaqabaGccaaIPaGaeyOeI0IaaGikaiab eU7aSnaaBaaaleaacaaIYaaabeaakiabgEGirlabeA8aQjaaiYcacq GHhis0cqaH4oqCcaaIPaGaeyOeI0IaaGynaiabeQ7aRjaaiIcacqaH gpGAdaqhaaWcbaGaaGymaaqaaiaaisdaaaGccqaHgpGAcaaISaGaeq iUdeNaaGykaiabgkHiTiaaiwdacqaH6oWAcaaIOaGaaGikaiabeA8a QnaaBaaaleaacaaIXaaabeaakiabgUcaRiabeA8aQnaaBaaaleaaca aIYaaabeaakiaaiMcacaaIOaGaeqOXdO2aa0baaSqaaiaaigdaaeaa caaIYaaaaOGaey4kaSIaeqOXdO2aa0baaSqaaiaaikdaaeaacaaIYa aaaOGaaGykaiabeA8aQnaaCaaaleqabaGaaGOmaaaakiaaiYcacqaH 4oqCdaWgaaWcbaGaaGOmaaqabaGccaaIPaGaeyOeI0caaa@7DE3@

  (vφ, θ 1 ) Γ N ( v 2 φ,θ) Γ N μ 0 (φ φ d ,φ) Q . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeyOeI0IaaGikaiaadAhacqaHgpGAcaaISaGaeq iUde3aaSbaaSqaaiaaigdaaeqaaOGaaGykamaaBaaaleaacqqHtoWr daWgaaqaaiaad6eaaeqaaaqabaGccqGHsislcaaIOaGaamODamaaBa aaleaacaaIYaaabeaakiabeA8aQjaaiYcacqaH4oqCcaaIPaWaaSba aSqaaiabfo5ahnaaBaaabaGaamOtaaqabaaabeaakiabgkHiTiabeY 7aTnaaBaaaleaacaaIWaaabeaakiaaiIcacqaHgpGAcqGHsislcqaH gpGAdaahaaWcbeqaaiaadsgaaaGccaaISaGaeqOXdOMaaGykamaaBa aaleaacaWGrbaabeaakiaai6caaaa@5647@ (85)

Рассуждая как и выше, последовательно оценим слагаемые в правой части (85). Справедливы следующие неравенства:

|(λφ, θ 1 )| μ 0 C 1 C * M φ 0 λ s,Ω φ 1,Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGiFaiaaiIcacqaH7oaBcqGHhis0cqaHgpGAca aISaGaey4bIeTaeqiUde3aaSbaaSqaaiaaigdaaeqaaOGaaGykaiaa iYhacqGHKjYOcqaH8oqBdaWgaaWcbaGaaGimaaqabaGccaWGdbWaaS baaSqaaiaaigdaaeqaaOGaam4qamaaBaaaleaacaaIQaaabeaakiaa d2eadaqhaaWcbaGaeqOXdOgabaGaaGimaaaarqqr1ngBPrgifHhDYf gaiqaakiab=vIiqjabeU7aSjab=vIiqnaaBaaaleaacaWGZbGaaGil aiabfM6axbqabaGccqWFLicucqaHgpGAcqWFLicudaWgaaWcbaGaaG ymaiaaiYcacqqHPoWvaeqaaOGaeyizImkaaa@5F07@

μ 0 C 1 C * M φ 0 [( ω 1 +0.5 ω 2 +0.5 ω 3 )λ s,Ω 2 +0.5 ω 2 α Γ N 2 +0.5 ω 3 ψ 1/2, Γ D 2 ], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeyizImQaeqiVd02aaSbaaSqaaiaaicdaaeqaaO Gaam4qamaaBaaaleaacaaIXaaabeaakiaadoeadaWgaaWcbaGaaGOk aaqabaGccaWGnbWaa0baaSqaaiabeA8aQbqaaiaaicdaaaGccaaIBb GaaGikaiabeM8a3naaBaaaleaacaaIXaaabeaakiabgUcaRiaaicda caaIUaGaaGynaiabeM8a3naaBaaaleaacaaIYaaabeaakiabgUcaRi aaicdacaaIUaGaaGynaiabeM8a3naaBaaaleaacaaIZaaabeaakiaa iMcarqqr1ngBPrgifHhDYfgaiqaacqWFLicucqaH7oaBcqWFLicuda qhaaWcbaGaam4CaiaaiYcacqqHPoWvaeaacaaIYaaaaOGaey4kaSIa aGimaiaai6cacaaI1aGaeqyYdC3aaSbaaSqaaiaaikdaaeqaaOGae8 xjIaLaeqySdeMae8xjIa1aa0baaSqaaiabfo5ahnaaBaaabaGaamOt aaqabaaabaGaaGOmaaaakiabgUcaRiaaicdacaaIUaGaaGynaiabeM 8a3naaBaaaleaacaaIZaaabeaakiab=vIiqjabeI8a5jab=vIiqnaa DaaaleaacaaIXaGaaG4laiaaikdacaaISaGaeu4KdC0aaSbaaeaaca WGebaabeaaaeaacaaIYaaaaOGaaGyxaiaaiYcaaaa@78E0@

|( λ 2 φ,θ)| MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGiFaiaaiIcacqaH7oaBdaWgaaWcbaGaaGOmaa qabaGccqGHhis0cqaHgpGAcaaISaGaey4bIeTaeqiUdeNaaGykaiaa iYhacqGHKjYOaaa@409F@

μ 0 C 1 C λ ( ω 1 λ s,Ω + ω 2 α Γ N + ω 3 ψ 1/2, Γ D )( κ 1 λ s,Ω + κ 2 α Γ N + κ 3 ψ 1/2, Γ D + κ 4 φ d Q ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeyizImQaeqiVd02aaSbaaSqaaiaaicdaaeqaaO Gaam4qamaaBaaaleaacaaIXaaabeaakiaadoeadaWgaaWcbaGaeq4U dWgabeaakiaaiIcacqaHjpWDdaWgaaWcbaGaaGymaaqabaqeeuuDJX wAKbsr4rNCHbaceaGccqWFLicucqaH7oaBcqWFLicudaWgaaWcbaGa am4CaiaaiYcacqqHPoWvaeqaaOGaey4kaSIaeqyYdC3aaSbaaSqaai aaikdaaeqaaOGae8xjIaLaeqySdeMae8xjIa1aaSbaaSqaaiabfo5a hnaaBaaabaGaamOtaaqabaaabeaakiabgUcaRiabeM8a3naaBaaale aacaaIZaaabeaakiab=vIiqjabeI8a5jab=vIiqnaaBaaaleaacaaI XaGaaG4laiaaikdacaaISaGaeu4KdC0aaSbaaeaacaWGebaabeaaae qaaOGaaGykaiaaiIcacqaH6oWAdaWgaaWcbaGaaGymaaqabaGccqWF LicucqaH7oaBcqWFLicudaWgaaWcbaGaam4CaiaaiYcacqqHPoWvae qaaOGaey4kaSIaeqOUdS2aaSbaaSqaaiaaikdaaeqaaOGae8xjIaLa eqySdeMae8xjIa1aaSbaaSqaaiabfo5ahnaaBaaabaGaamOtaaqaba aabeaakiabgUcaRiabeQ7aRnaaBaaaleaacaaIZaaabeaakiab=vIi qjabeI8a5jab=vIiqnaaBaaaleaacaaIXaGaaG4laiaaikdacaaISa Gaeu4KdC0aaSbaaeaacaWGebaabeaaaeqaaOGaey4kaSIaeqOUdS2a aSbaaSqaaiaaisdaaeqaaOGae8xjIaLaeqOXdO2aaWbaaSqabeaaca WGKbaaaOGae8xjIa1aaSbaaSqaaiaadgfaaeqaaOGaaGykaiabgsMi Jcaa@8F4E@

μ 0 C 1 C λ [( ω 1 κ 1 +1.5 ω 1 2 + κ 1 2 )λ s,Ω 2 +( ω 2 κ 2 +1.5 ω 2 2 + κ 2 2 )α Γ N 2 ]+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeyizImQaeqiVd02aaSbaaSqaaiaaicdaaeqaaO Gaam4qamaaBaaaleaacaaIXaaabeaakiaadoeadaWgaaWcbaGaeq4U dWgabeaakiaaiUfacaaIOaGaeqyYdC3aaSbaaSqaaiaaigdaaeqaaO GaeqOUdS2aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaaGymaiaai6ca caaI1aGaeqyYdC3aa0baaSqaaiaaigdaaeaacaaIYaaaaOGaey4kaS IaeqOUdS2aa0baaSqaaiaaigdaaeaacaaIYaaaaOGaaGykaebbfv3y SLgzGueE0jxyaGabaiab=vIiqjabeU7aSjab=vIiqnaaDaaaleaaca WGZbGaaGilaiabfM6axbqaaiaaikdaaaGccqGHRaWkcaaIOaGaeqyY dC3aaSbaaSqaaiaaikdaaeqaaOGaeqOUdS2aaSbaaSqaaiaaikdaae qaaOGaey4kaSIaaGymaiaai6cacaaI1aGaeqyYdC3aa0baaSqaaiaa ikdaaeaacaaIYaaaaOGaey4kaSIaeqOUdS2aa0baaSqaaiaaikdaae aacaaIYaaaaOGaaGykaiab=vIiqjabeg7aHjab=vIiqnaaDaaaleaa cqqHtoWrdaWgaaqaaiaad6eaaeqaaaqaaiaaikdaaaGccaaIDbGaey 4kaScaaa@7502@

+ μ 0 C 1 C λ [( ω 3 κ 3 +1.5 ω 3 2 + κ 3 2 )ψ 1/2, Γ D 2 +1.5 κ 4 2 φ d Q 2 ], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaey4kaSIaeqiVd02aaSbaaSqaaiaaicdaaeqaaO Gaam4qamaaBaaaleaacaaIXaaabeaakiaadoeadaWgaaWcbaGaeq4U dWgabeaakiaaiUfacaaIOaGaeqyYdC3aaSbaaSqaaiaaiodaaeqaaO GaeqOUdS2aaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaaGymaiaai6ca caaI1aGaeqyYdC3aa0baaSqaaiaaiodaaeaacaaIYaaaaOGaey4kaS IaeqOUdS2aa0baaSqaaiaaiodaaeaacaaIYaaaaOGaaGykaebbfv3y SLgzGueE0jxyaGabaiab=vIiqjabeI8a5jab=vIiqnaaDaaaleaaca aIXaGaaG4laiaaikdacaaISaGaeu4KdC0aaSbaaeaacaWGebaabeaa aeaacaaIYaaaaOGaey4kaSIaaGymaiaai6cacaaI1aGaeqOUdS2aa0 baaSqaaiaaisdaaeaacaaIYaaaaOGae8xjIaLaeqOXdO2aaWbaaSqa beaacaWGKbaaaOGae8xjIa1aa0baaSqaaiaadgfaaeaacaaIYaaaaO GaaGyxaiaaiYcaaaa@69D3@

|5κ( φ 1 4 φ,θ)|5 μ 0 κ C 6 6 M φ 4 [( ω 1 κ 1 +1.5 ω 1 2 + κ 1 2 )λ s,Ω 2 +( ω 2 κ 2 +1.5 ω 2 2 + κ 2 2 )α Γ N 2 ]+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGiFaiaaiwdacqaH6oWAcaaIOaGaeqOXdO2aa0 baaSqaaiaaigdaaeaacaaI0aaaaOGaeqOXdOMaaGilaiabeI7aXjaa iMcacaaI8bGaeyizImQaaGynaiabeY7aTnaaBaaaleaacaaIWaaabe aakiabeQ7aRjaadoeadaqhaaWcbaGaaGOnaaqaaiaaiAdaaaGccaWG nbWaa0baaSqaaiabeA8aQbqaaiaaisdaaaGccaaIBbGaaGikaiabeM 8a3naaBaaaleaacaaIXaaabeaakiabeQ7aRnaaBaaaleaacaaIXaaa beaakiabgUcaRiaaigdacaaIUaGaaGynaiabeM8a3naaDaaaleaaca aIXaaabaGaaGOmaaaakiabgUcaRiabeQ7aRnaaDaaaleaacaaIXaaa baGaaGOmaaaakiaaiMcarqqr1ngBPrgifHhDYfgaiqaacqWFLicucq aH7oaBcqWFLicudaqhaaWcbaGaam4CaiaaiYcacqqHPoWvaeaacaaI YaaaaOGaey4kaSIaaGikaiabeM8a3naaBaaaleaacaaIYaaabeaaki abeQ7aRnaaBaaaleaacaaIYaaabeaakiabgUcaRiaaigdacaaIUaGa aGynaiabeM8a3naaDaaaleaacaaIYaaabaGaaGOmaaaakiabgUcaRi abeQ7aRnaaDaaaleaacaaIYaaabaGaaGOmaaaakiaaiMcacqWFLicu cqaHXoqycqWFLicudaqhaaWcbaGaeu4KdC0aaSbaaeaacaWGobaabe aaaeaacaaIYaaaaOGaaGyxaiabgUcaRaaa@8683@

+5 μ 0 κ C 6 6 M φ 4 [( ω 3 κ 3 +1.5 ω 3 2 + κ 3 2 )ψ 1/2, Γ D 2 +1.5 κ 4 2 φ d Q 2 ], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaey4kaSIaaGynaiabeY7aTnaaBaaaleaacaaIWa aabeaakiabeQ7aRjaadoeadaqhaaWcbaGaaGOnaaqaaiaaiAdaaaGc caWGnbWaa0baaSqaaiabeA8aQbqaaiaaisdaaaGccaaIBbGaaGikai abeM8a3naaBaaaleaacaaIZaaabeaakiabeQ7aRnaaBaaaleaacaaI ZaaabeaakiabgUcaRiaaigdacaaIUaGaaGynaiabeM8a3naaDaaale aacaaIZaaabaGaaGOmaaaakiabgUcaRiabeQ7aRnaaDaaaleaacaaI ZaaabaGaaGOmaaaakiaaiMcarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucqaHipqEcqWFLicudaqhaaWcbaGaaGymaiaai+cacaaIYaGaaGil aiabfo5ahnaaBaaabaGaamiraaqabaaabaGaaGOmaaaakiabgUcaRi aaigdacaaIUaGaaGynaiabeQ7aRnaaDaaaleaacaaI0aaabaGaaGOm aaaakiab=vIiqjabeA8aQnaaCaaaleqabaGaamizaaaakiab=vIiqn aaDaaaleaacaWGrbaabaGaaGOmaaaakiaai2facaaISaaaaa@6DDC@

|5κ(( φ 1 + φ 2 )( φ 1 2 + φ 2 2 ) φ 2 , θ 2 )|60 μ 0 κ C 6 6 C * M φ 0 M φ 3 ( ω 1 2 λ s,Ω 2 + ω 2 2 α Γ N 2 + ω 3 2 ψ 1/2, Γ D 2 ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGiFaiaaiwdacqaH6oWAcaaIOaGaaGikaiabeA 8aQnaaBaaaleaacaaIXaaabeaakiabgUcaRiabeA8aQnaaBaaaleaa caaIYaaabeaakiaaiMcacaaIOaGaeqOXdO2aa0baaSqaaiaaigdaae aacaaIYaaaaOGaey4kaSIaeqOXdO2aa0baaSqaaiaaikdaaeaacaaI YaaaaOGaaGykaiabeA8aQnaaCaaaleqabaGaaGOmaaaakiaaiYcacq aH4oqCdaWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGiFaiabgsMiJkaa iAdacaaIWaGaeqiVd02aaSbaaSqaaiaaicdaaeqaaOGaeqOUdSMaam 4qamaaDaaaleaacaaI2aaabaGaaGOnaaaakiaadoeadaWgaaWcbaGa aGOkaaqabaGccaWGnbWaa0baaSqaaiabeA8aQbqaaiaaicdaaaGcca WGnbWaa0baaSqaaiabeA8aQbqaaiaaiodaaaGccaaIOaGaeqyYdC3a a0baaSqaaiaaigdaaeaacaaIYaaaaebbfv3ySLgzGueE0jxyaGabaO Gae8xjIaLaeq4UdWMae8xjIa1aa0baaSqaaiaadohacaaISaGaeuyQ dCfabaGaaGOmaaaakiabgUcaRiabeM8a3naaDaaaleaacaaIYaaaba GaaGOmaaaakiab=vIiqjabeg7aHjab=vIiqnaaDaaaleaacqqHtoWr daWgaaqaaiaad6eaaeqaaaqaaiaaikdaaaGccqGHRaWkcqaHjpWDda qhaaWcbaGaaG4maaqaaiaaikdaaaGccqWFLicucqaHipqEcqWFLicu daqhaaWcbaGaaGymaiaai+cacaaIYaGaaGilaiabfo5ahnaaBaaaba GaamiraaqabaaabaGaaGOmaaaakiaaiMcacaaISaaaaa@8D6B@

|(vφ, θ 1 ) Γ N |=|((λ α 1 +α λ 2 )φ, θ 1 ) Γ N | μ 0 γ 2 C * M φ 0 ( C α λ s,Ω + C λ α Γ N )φ 1,Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGiFaiaaiIcacaWG2bGaeqOXdOMaaGilaiabeI 7aXnaaBaaaleaacaaIXaaabeaakiaaiMcadaWgaaWcbaGaeu4KdC0a aSbaaeaacaWGobaabeaaaeqaaOGaaGiFaiaai2dacaaI8bGaaGikai aaiIcacqaH7oaBcqaHXoqydaWgaaWcbaGaaGymaaqabaGccqGHRaWk cqaHXoqycqaH7oaBdaWgaaWcbaGaaGOmaaqabaGccaaIPaGaeqOXdO MaaGilaiabeI7aXnaaBaaaleaacaaIXaaabeaakiaaiMcadaWgaaWc baGaeu4KdC0aaSbaaeaacaWGobaabeaaaeqaaOGaaGiFaiabgsMiJk abeY7aTnaaBaaaleaacaaIWaaabeaakiabeo7aNnaaBaaaleaacaaI YaaabeaakiaadoeadaWgaaWcbaGaaGOkaaqabaGccaWGnbWaa0baaS qaaiabeA8aQbqaaiaaicdaaaGccaaIOaGaam4qamaaBaaaleaacqaH Xoqyaeqaaebbfv3ySLgzGueE0jxyaGabaOGae8xjIaLaeq4UdWMae8 xjIa1aaSbaaSqaaiaadohacaaISaGaeuyQdCfabeaakiabgUcaRiaa doeadaWgaaWcbaGaeq4UdWgabeaakiab=vIiqjabeg7aHjab=vIiqn aaBaaaleaacqqHtoWrdaWgaaqaaiaad6eaaeqaaaqabaGccaaIPaGa e8xjIaLaeqOXdOMae8xjIa1aaSbaaSqaaiaaigdacaaISaGaeuyQdC fabeaakiabgsMiJcaa@8367@

μ 0 γ 2 C * M φ 0 ( C α λ s,Ω + C λ α Γ N )( ω 1 λ s,Ω + ω 2 α Γ N + ω 3 ψ 1/2, Γ D ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeyizImQaeqiVd02aaSbaaSqaaiaaicdaaeqaaO Gaeq4SdC2aaSbaaSqaaiaaikdaaeqaaOGaam4qamaaBaaaleaacaaI Qaaabeaakiaad2eadaqhaaWcbaGaeqOXdOgabaGaaGimaaaakiaaiI cacaWGdbWaaSbaaSqaaiabeg7aHbqabaqeeuuDJXwAKbsr4rNCHbac eaGccqWFLicucqaH7oaBcqWFLicudaWgaaWcbaGaam4CaiaaiYcacq qHPoWvaeqaaOGaey4kaSIaam4qamaaBaaaleaacqaH7oaBaeqaaOGa e8xjIaLaeqySdeMae8xjIa1aaSbaaSqaaiabfo5ahnaaBaaabaGaam OtaaqabaaabeaakiaaiMcacaaIOaGaeqyYdC3aaSbaaSqaaiaaigda aeqaaOGae8xjIaLaeq4UdWMae8xjIa1aaSbaaSqaaiaadohacaaISa GaeuyQdCfabeaakiabgUcaRiabeM8a3naaBaaaleaacaaIYaaabeaa kiab=vIiqjabeg7aHjab=vIiqnaaBaaaleaacqqHtoWrdaWgaaqaai aad6eaaeqaaaqabaGccqGHRaWkcqaHjpWDdaWgaaWcbaGaaG4maaqa baGccqWFLicucqaHipqEcqWFLicudaWgaaWcbaGaaGymaiaai+caca aIYaGaaGilaiabfo5ahnaaBaaabaGaamiraaqabaaabeaakiaaiMca cqGHKjYOaaa@7C12@

μ 0 γ 2 C * M φ 0 [( C α ω 1 + C α +0.5 ω 1 2 )λ s,Ω 2 +( C λ ω 2 + C λ +0.5 ω 2 2 )α Γ N 2 + ω 3 2 ψ 1/2, Γ D 2 ], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeyizImQaeqiVd02aaSbaaSqaaiaaicdaaeqaaO Gaeq4SdC2aaSbaaSqaaiaaikdaaeqaaOGaam4qamaaBaaaleaacaaI Qaaabeaakiaad2eadaqhaaWcbaGaeqOXdOgabaGaaGimaaaakiaaiU facaaIOaGaam4qamaaBaaaleaacqaHXoqyaeqaaOGaeqyYdC3aaSba aSqaaiaaigdaaeqaaOGaey4kaSIaam4qamaaBaaaleaacqaHXoqyae qaaOGaey4kaSIaaGimaiaai6cacaaI1aGaeqyYdC3aa0baaSqaaiaa igdaaeaacaaIYaaaaOGaaGykaebbfv3ySLgzGueE0jxyaGabaiab=v IiqjabeU7aSjab=vIiqnaaDaaaleaacaWGZbGaaGilaiabfM6axbqa aiaaikdaaaGccqGHRaWkcaaIOaGaam4qamaaBaaaleaacqaH7oaBae qaaOGaeqyYdC3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaam4qamaa BaaaleaacqaH7oaBaeqaaOGaey4kaSIaaGimaiaai6cacaaI1aGaeq yYdC3aa0baaSqaaiaaikdaaeaacaaIYaaaaOGaaGykaiab=vIiqjab eg7aHjab=vIiqnaaDaaaleaacqqHtoWrdaWgaaqaaiaad6eaaeqaaa qaaiaaikdaaaGccqGHRaWkcqaHjpWDdaqhaaWcbaGaaG4maaqaaiaa ikdaaaGccqWFLicucqaHipqEcqWFLicudaqhaaWcbaGaaGymaiaai+ cacaaIYaGaaGilaiabfo5ahnaaBaaabaGaamiraaqabaaabaGaaGOm aaaakiaai2facaaISaaaaa@855A@

|( v 2 φ,θ ) Γ N |=|( λ 2 α 2 φ,θ ) Γ N | γ 2 C λ C α φ 1,Ω θ 1,Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGiFaiaaiIcacaWG2bWaaSbaaSqaaiaaikdaae qaaOGaeqOXdOMaaGilaiabeI7aXjaaiMcadaWgaaWcbaGaeu4KdC0a aSbaaeaacaWGobaabeaaaeqaaOGaaGiFaiaai2dacaaI8bGaaGikai abeU7aSnaaBaaaleaacaaIYaaabeaakiabeg7aHnaaBaaaleaacaaI YaaabeaakiabeA8aQjaaiYcacqaH4oqCcaaIPaWaaSbaaSqaaiabfo 5ahnaaBaaabaGaamOtaaqabaaabeaakiaaiYhacqGHKjYOcqaHZoWz daWgaaWcbaGaaGOmaaqabaGccaWGdbWaaSbaaSqaaiabeU7aSbqaba GccaWGdbWaaSbaaSqaaiabeg7aHbqabaqeeuuDJXwAKbsr4rNCHbac eaGccqWFLicucqaHgpGAcqWFLicudaWgaaWcbaGaaGymaiaaiYcacq qHPoWvaeqaaOGae8xjIaLaeqiUdeNae8xjIa1aaSbaaSqaaiaaigda caaISaGaeuyQdCfabeaakiabgsMiJcaa@6C1B@

μ 0 γ 2 C λ C α [( ω 1 κ 1 +1.5 ω 1 2 + κ 1 2 )λ s,Ω 2 +( ω 2 κ 2 +1.5 ω 2 2 + κ 2 2 )α Γ N 2 + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeyizImQaeqiVd02aaSbaaSqaaiaaicdaaeqaaO Gaeq4SdC2aaSbaaSqaaiaaikdaaeqaaOGaam4qamaaBaaaleaacqaH 7oaBaeqaaOGaam4qamaaBaaaleaacqaHXoqyaeqaaOGaaG4waiaaiI cacqaHjpWDdaWgaaWcbaGaaGymaaqabaGccqaH6oWAdaWgaaWcbaGa aGymaaqabaGccqGHRaWkcaaIXaGaaGOlaiaaiwdacqaHjpWDdaqhaa WcbaGaaGymaaqaaiaaikdaaaGccqGHRaWkcqaH6oWAdaqhaaWcbaGa aGymaaqaaiaaikdaaaGccaaIPaqeeuuDJXwAKbsr4rNCHbaceaGae8 xjIaLaeq4UdWMae8xjIa1aa0baaSqaaiaadohacaaISaGaeuyQdCfa baGaaGOmaaaakiabgUcaRiaaiIcacqaHjpWDdaWgaaWcbaGaaGOmaa qabaGccqaH6oWAdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaaIXaGa aGOlaiaaiwdacqaHjpWDdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccq GHRaWkcqaH6oWAdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccaaIPaGa e8xjIaLaeqySdeMae8xjIa1aa0baaSqaaiabfo5ahnaaBaaabaGaam OtaaqabaaabaGaaGOmaaaakiabgUcaRaaa@7798@

+( ω 3 κ 3 +1.5 ω 3 2 + κ 3 2 )ψ 1/2, Γ D 2 +1.5 κ 4 2 φ d Q 2 ], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaey4kaSIaaGikaiabeM8a3naaBaaaleaacaaIZa aabeaakiabeQ7aRnaaBaaaleaacaaIZaaabeaakiabgUcaRiaaigda caaIUaGaaGynaiabeM8a3naaDaaaleaacaaIZaaabaGaaGOmaaaaki abgUcaRiabeQ7aRnaaDaaaleaacaaIZaaabaGaaGOmaaaakiaaiMca rqqr1ngBPrgifHhDYfgaiqaacqWFLicucqaHipqEcqWFLicudaqhaa WcbaGaaGymaiaai+cacaaIYaGaaGilaiabfo5ahnaaBaaabaGaamir aaqabaaabaGaaGOmaaaakiabgUcaRiaaigdacaaIUaGaaGynaiabeQ 7aRnaaDaaaleaacaaI0aaabaGaaGOmaaaakiab=vIiqjabeA8aQnaa CaaaleqabaGaamizaaaakiab=vIiqnaaDaaaleaacaWGrbaabaGaaG Omaaaakiaai2facaaISaaaaa@61DD@

| μ 0 (φ φ d ,φ) Q | μ 0 (1.5 C 2 2 φ 1,Ω 2 +0.5 φ d Q 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGiFaiabeY7aTnaaBaaaleaacaaIWaaabeaaki aaiIcacqaHgpGAcqGHsislcqaHgpGAdaahaaWcbeqaaiaadsgaaaGc caaISaGaeqOXdOMaaGykamaaBaaaleaacaWGrbaabeaakiaaiYhacq GHKjYOcqaH8oqBdaWgaaWcbaGaaGimaaqabaGccaaIOaGaaGymaiaa i6cacaaI1aGaam4qamaaDaaaleaacaaIYaaabaGaaGOmaaaarqqr1n gBPrgifHhDYfgaiqaakiab=vIiqjabeA8aQjab=vIiqnaaDaaaleaa caaIXaGaaGilaiabfM6axbqaaiaaikdaaaGccqGHRaWkcaaIWaGaaG OlaiaaiwdacqWFLicucqaHgpGAdaahaaWcbeqaaiaadsgaaaGccqWF LicudaqhaaWcbaGaamyuaaqaaiaaikdaaaGccaaIPaGaeyizImkaaa@634C@

  μ 0 4.5 C 2 2 ( ω 1 2 λ s,Ω 2 + ω 2 2 α Γ N 2 + ω 3 2 ψ 1/2, Γ D 2 )+0.5 φ d Q 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeyizImQaeqiVd02aaSbaaSqaaiaaicdaaeqaaO WaaeWaaeaacaaI0aGaaGOlaiaaiwdacaWGdbWaa0baaSqaaiaaikda aeaacaaIYaaaaOGaaGikaiabeM8a3naaDaaaleaacaaIXaaabaGaaG Omaaaarqqr1ngBPrgifHhDYfgaiqaakiab=vIiqjabeU7aSjab=vIi qnaaDaaaleaacaWGZbGaaGilaiabfM6axbqaaiaaikdaaaGccqGHRa WkcqaHjpWDdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccqWFLicucqaH XoqycqWFLicudaqhaaWcbaGaeu4KdC0aaSbaaeaacaWGobaabeaaae aacaaIYaaaaOGaey4kaSIaeqyYdC3aa0baaSqaaiaaiodaaeaacaaI YaaaaOGae8xjIaLaeqiYdKNae8xjIa1aa0baaSqaaiaaigdacaaIVa GaaGOmaiaaiYcacqqHtoWrdaWgaaqaaiaadseaaeqaaaqaaiaaikda aaGccaaIPaGaey4kaSIaaGimaiaai6cacaaI1aGae8xjIaLaeqOXdO 2aaWbaaSqabeaacaWGKbaaaOGae8xjIa1aa0baaSqaaiaadgfaaeaa caaIYaaaaaGccaGLOaGaayzkaaGaaGOlaaaa@7281@ (86)

Из неравенств (86) приходим к оценке

  | ζ,ψ Γ D | μ 0 ( ξ 1 2 λ s,Ω 2 + ξ 2 2 α Γ N 2 + ξ 3 2 ψ 1/2, Γ D 2 + ξ 4 2 φ d Q 2 ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGiFaiabgMYiHlabeA7a6jaaiYcacqaHipqEcq GHQms8daWgaaWcbaGaeu4KdC0aaSbaaeaacaWGebaabeaaaeqaaOGa aGiFaiabgsMiJkabeY7aTnaaBaaaleaacaaIWaaabeaakiaaiIcacq aH+oaEdaqhaaWcbaGaaGymaaqaaiaaikdaaaqeeuuDJXwAKbsr4rNC HbaceaGccqWFLicucqaH7oaBcqWFLicudaqhaaWcbaGaam4CaiaaiY cacqqHPoWvaeaacaaIYaaaaOGaey4kaSIaeqOVdG3aa0baaSqaaiaa ikdaaeaacaaIYaaaaOGae8xjIaLaeqySdeMae8xjIa1aa0baaSqaai abfo5ahnaaBaaabaGaamOtaaqabaaabaGaaGOmaaaakiabgUcaRiab e67a4naaDaaaleaacaaIZaaabaGaaGOmaaaakiab=vIiqjabeI8a5j ab=vIiqnaaDaaaleaacaaIXaGaaG4laiaaikdacaaISaGaeu4KdC0a aSbaaeaacaWGebaabeaaaeaacaaIYaaaaOGaey4kaSIaeqOVdG3aa0 baaSqaaiaaisdaaeaacaaIYaaaaOGae8xjIaLaeqOXdO2aaWbaaSqa beaacaWGKbaaaOGae8xjIa1aa0baaSqaaiaadgfaaeaacaaIYaaaaO GaaGykaiaai6caaaa@79C9@ (87)

Здесь положительные константы ξ i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqOVdG3aaSbaaSqaaiaadMgaaeqaaaaa@347B@ , i=1,2,3,4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamyAaiaai2dacaaIXaGaaGilaiaaikdacaaISa GaaG4maiaaiYcacaaI0aaaaa@3867@ , определяются формулами

ξ 1 2 =( ω 1 κ 1 +1.5 ω 1 2 + κ 1 2 )( C 1 C λ +5κ C 6 6 M φ 4 + γ 2 C λ C α )+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqOVdG3aa0baaSqaaiaaigdaaeaacaaIYaaaaO GaaGypaiaaiIcacqaHjpWDdaWgaaWcbaGaaGymaaqabaGccqaH6oWA daWgaaWcbaGaaGymaaqabaGccqGHRaWkcaaIXaGaaGOlaiaaiwdacq aHjpWDdaqhaaWcbaGaaGymaaqaaiaaikdaaaGccqGHRaWkcqaH6oWA daqhaaWcbaGaaGymaaqaaiaaikdaaaGccaaIPaGaaGikaiaadoeada WgaaWcbaGaaGymaaqabaGccaWGdbWaaSbaaSqaaiabeU7aSbqabaGc cqGHRaWkcaaI1aGaeqOUdSMaam4qamaaDaaaleaacaaI2aaabaGaaG Onaaaakiaad2eadaqhaaWcbaGaeqOXdOgabaGaaGinaaaakiabgUca Riabeo7aNnaaBaaaleaacaaIYaaabeaakiaadoeadaWgaaWcbaGaeq 4UdWgabeaakiaadoeadaWgaaWcbaGaeqySdegabeaakiaaiMcacqGH RaWkaaa@603F@

+ C * M φ 0 [ C 1 ( ω 1 +0.5 ω 2 +0.5 ω 3 )+60κ C 6 6 ω 1 2 M φ 3 + γ 2 ( C α ω 1 + C α +0.5 ω 1 2 )]+4.5 C 2 2 ω 1 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaey4kaSIaam4qamaaBaaaleaacaaIQaaabeaaki aad2eadaqhaaWcbaGaeqOXdOgabaGaaGimaaaakiaaiUfacaWGdbWa aSbaaSqaaiaaigdaaeqaaOGaaGikaiabeM8a3naaBaaaleaacaaIXa aabeaakiabgUcaRiaaicdacaaIUaGaaGynaiabeM8a3naaBaaaleaa caaIYaaabeaakiabgUcaRiaaicdacaaIUaGaaGynaiabeM8a3naaBa aaleaacaaIZaaabeaakiaaiMcacqGHRaWkcaaI2aGaaGimaiabeQ7a RjaadoeadaqhaaWcbaGaaGOnaaqaaiaaiAdaaaGccqaHjpWDdaqhaa WcbaGaaGymaaqaaiaaikdaaaGccaWGnbWaa0baaSqaaiabeA8aQbqa aiaaiodaaaGccqGHRaWkcqaHZoWzdaWgaaWcbaGaaGOmaaqabaGcca aIOaGaam4qamaaBaaaleaacqaHXoqyaeqaaOGaeqyYdC3aaSbaaSqa aiaaigdaaeqaaOGaey4kaSIaam4qamaaBaaaleaacqaHXoqyaeqaaO Gaey4kaSIaaGimaiaai6cacaaI1aGaeqyYdC3aa0baaSqaaiaaigda aeaacaaIYaaaaOGaaGykaiaai2facqGHRaWkcaaI0aGaaGOlaiaaiw dacaWGdbWaa0baaSqaaiaaikdaaeaacaaIYaaaaOGaeqyYdC3aa0ba aSqaaiaaigdaaeaacaaIYaaaaOGaaGilaaaa@7691@

ξ 2 2 =( ω 2 κ 2 +1.5 ω 2 2 + κ 2 2 )( C 1 C λ +5κ C 6 6 M φ 4 + γ 2 C λ C α )+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqOVdG3aa0baaSqaaiaaikdaaeaacaaIYaaaaO GaaGypaiaaiIcacqaHjpWDdaWgaaWcbaGaaGOmaaqabaGccqaH6oWA daWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaaIXaGaaGOlaiaaiwdacq aHjpWDdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGHRaWkcqaH6oWA daqhaaWcbaGaaGOmaaqaaiaaikdaaaGccaaIPaGaaGikaiaadoeada WgaaWcbaGaaGymaaqabaGccaWGdbWaaSbaaSqaaiabeU7aSbqabaGc cqGHRaWkcaaI1aGaeqOUdSMaam4qamaaDaaaleaacaaI2aaabaGaaG Onaaaakiaad2eadaqhaaWcbaGaeqOXdOgabaGaaGinaaaakiabgUca Riabeo7aNnaaBaaaleaacaaIYaaabeaakiaadoeadaWgaaWcbaGaeq 4UdWgabeaakiaadoeadaWgaaWcbaGaeqySdegabeaakiaaiMcacqGH RaWkaaa@6044@

+ C * M φ 0 [0.5 C 1 ω 2 +60κ C 6 6 ω 2 2 M φ 3 + γ 2 ( C λ ω 2 + C λ +0.5 ω 2 2 )]+4.5 C 2 2 ω 2 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaey4kaSIaam4qamaaBaaaleaacaaIQaaabeaaki aad2eadaqhaaWcbaGaeqOXdOgabaGaaGimaaaakiaaiUfacaaIWaGa aGOlaiaaiwdacaWGdbWaaSbaaSqaaiaaigdaaeqaaOGaeqyYdC3aaS baaSqaaiaaikdaaeqaaOGaey4kaSIaaGOnaiaaicdacqaH6oWAcaWG dbWaa0baaSqaaiaaiAdaaeaacaaI2aaaaOGaeqyYdC3aa0baaSqaai aaikdaaeaacaaIYaaaaOGaamytamaaDaaaleaacqaHgpGAaeaacaaI ZaaaaOGaey4kaSIaeq4SdC2aaSbaaSqaaiaaikdaaeqaaOGaaGikai aadoeadaWgaaWcbaGaeq4UdWgabeaakiabeM8a3naaBaaaleaacaaI YaaabeaakiabgUcaRiaadoeadaWgaaWcbaGaeq4UdWgabeaakiabgU caRiaaicdacaaIUaGaaGynaiabeM8a3naaDaaaleaacaaIYaaabaGa aGOmaaaakiaaiMcacaaIDbGaey4kaSIaaGinaiaai6cacaaI1aGaam 4qamaaDaaaleaacaaIYaaabaGaaGOmaaaakiabeM8a3naaDaaaleaa caaIYaaabaGaaGOmaaaakiaaiYcaaaa@6BE7@

ξ 3 2 =( ω 3 κ 3 +1.5 ω 3 2 + κ 3 2 )( C 1 C λ +5κ C 6 6 M φ 4 + γ 2 C λ C α )+ C * M φ 0 (0.5 ω 3 +60κ C 6 6 M φ 3 ω 3 2 + γ 2 ω 3 2 )+4.5 C 2 2 ω 3 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqOVdG3aa0baaSqaaiaaiodaaeaacaaIYaaaaO GaaGypaiaaiIcacqaHjpWDdaWgaaWcbaGaaG4maaqabaGccqaH6oWA daWgaaWcbaGaaG4maaqabaGccqGHRaWkcaaIXaGaaGOlaiaaiwdacq aHjpWDdaqhaaWcbaGaaG4maaqaaiaaikdaaaGccqGHRaWkcqaH6oWA daqhaaWcbaGaaG4maaqaaiaaikdaaaGccaaIPaGaaGikaiaadoeada WgaaWcbaGaaGymaaqabaGccaWGdbWaaSbaaSqaaiabeU7aSbqabaGc cqGHRaWkcaaI1aGaeqOUdSMaam4qamaaDaaaleaacaaI2aaabaGaaG Onaaaakiaad2eadaqhaaWcbaGaeqOXdOgabaGaaGinaaaakiabgUca Riabeo7aNnaaBaaaleaacaaIYaaabeaakiaadoeadaWgaaWcbaGaeq 4UdWgabeaakiaadoeadaWgaaWcbaGaeqySdegabeaakiaaiMcacqGH RaWkcaWGdbWaaSbaaSqaaiaaiQcaaeqaaOGaamytamaaDaaaleaacq aHgpGAaeaacaaIWaaaaOGaaGikaiaaicdacaaIUaGaaGynaiabeM8a 3naaBaaaleaacaaIZaaabeaakiabgUcaRiaaiAdacaaIWaGaeqOUdS Maam4qamaaDaaaleaacaaI2aaabaGaaGOnaaaakiaad2eadaqhaaWc baGaeqOXdOgabaGaaG4maaaakiabeM8a3naaDaaaleaacaaIZaaaba GaaGOmaaaakiabgUcaRiabeo7aNnaaBaaaleaacaaIYaaabeaakiab eM8a3naaDaaaleaacaaIZaaabaGaaGOmaaaakiaaiMcacqGHRaWkca aI0aGaaGOlaiaaiwdacaWGdbWaa0baaSqaaiaaikdaaeaacaaIYaaa aOGaeqyYdC3aa0baaSqaaiaaiodaaeaacaaIYaaaaOGaaGilaaaa@8A17@

  ξ 4 2 =1.5 C λ ( C 1 + γ 2 C α ) κ 4 2 +7.5κ C 6 6 κ 4 2 +0.5. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqOVdG3aa0baaSqaaiaaisdaaeaacaaIYaaaaO GaaGypaiaaigdacaaIUaGaaGynaiaadoeadaWgaaWcbaGaeq4UdWga beaakiaaiIcacaWGdbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeq 4SdC2aaSbaaSqaaiaaikdaaeqaaOGaam4qamaaBaaaleaacqaHXoqy aeqaaOGaaGykaiabeQ7aRnaaDaaaleaacaaI0aaabaGaaGOmaaaaki abgUcaRiaaiEdacaaIUaGaaGynaiabeQ7aRjaadoeadaqhaaWcbaGa aGOnaaqaaiaaiAdaaaGccqaH6oWAdaqhaaWcbaGaaGinaaqaaiaaik daaaGccqGHRaWkcaaIWaGaaGOlaiaaiwdacaaIUaaaaa@55CF@ (88)

Пусть исходные данные задачи (71) удовлетворяют условиям

  ( η 1 2 + ξ 1 2 ) μ 0 (1 ε 1 ) μ 1 ,( η 2 2 + ξ 2 2 ) μ 0 (1 ε 2 ) μ 2 , ε 1 , ε 2 (0,1). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikaiabeE7aOnaaDaaaleaacaaIXaaabaGaaG OmaaaakiabgUcaRiabe67a4naaDaaaleaacaaIXaaabaGaaGOmaaaa kiaaiMcacqaH8oqBdaWgaaWcbaGaaGimaaqabaGccqGHKjYOcaaIOa GaaGymaiabgkHiTiabew7aLnaaBaaaleaacaaIXaaabeaakiaaiMca cqaH8oqBdaWgaaWcbaGaaGymaaqabaGccaaISaGaaGjbVlaaysW7ca aIOaGaeq4TdG2aa0baaSqaaiaaikdaaeaacaaIYaaaaOGaey4kaSIa eqOVdG3aa0baaSqaaiaaikdaaeaacaaIYaaaaOGaaGykaiabeY7aTn aaBaaaleaacaaIWaaabeaakiabgsMiJkaaiIcacaaIXaGaeyOeI0Ia eqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGykaiabeY7aTnaaBaaale aacaaIYaaabeaakiaaiYcacaaMe8UaaGjbVlabew7aLnaaBaaaleaa caaIXaaabeaakiaaiYcacqaH1oqzdaWgaaWcbaGaaGOmaaqabaGccq GHiiIZcaaIOaGaaGimaiaaiYcacaaIXaGaaGykaiaai6caaaa@7067@ (89)

С учетом (89) из (73) выводим

  μ 0 φ Q 2 μ 0 (φ, φ d ) Q ε 1 μ 1 λ s,Ω 2 ε 2 μ 2 α Γ N 2 + C * M φ 0 (0.5 ω 3 +60κ C 6 6 M φ 3 ω 3 2 + γ 2 ω 3 2 )+4.5 C 2 2 ω 3 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqiVd02aaSbaaSqaaiaaicdaaeqaaebbfv3ySL gzGueE0jxyaGabaOGae8xjIaLaeqOXdOMae8xjIa1aa0baaSqaaiaa dgfaaeaacaaIYaaaaOGaeyizImQaeqiVd02aaSbaaSqaaiaaicdaae qaaOGaaGikaiabeA8aQjaaiYcacqaHgpGAdaahaaWcbeqaaiaadsga aaGccaaIPaWaaSbaaSqaaiaadgfaaeqaaOGaeyOeI0IaeqyTdu2aaS baaSqaaiaaigdaaeqaaOGaeqiVd02aaSbaaSqaaiaaigdaaeqaaOGa e8xjIaLaeq4UdWMae8xjIa1aa0baaSqaaiaadohacaaISaGaeuyQdC fabaGaaGOmaaaakiabgkHiTiabew7aLnaaBaaaleaacaaIYaaabeaa kiabeY7aTnaaBaaaleaacaaIYaaabeaakiab=vIiqjabeg7aHjab=v IiqnaaDaaaleaacqqHtoWrdaWgaaqaaiaad6eaaeqaaaqaaiaaikda aaGccqGHRaWkcGa7ao4qamacSd4gaaWcbGa7akacSdiIQaaabKa7ac GccGa7aoytamacSdyhaaWcbGa7akadSdiHgpGAaeacSdOaiWoGicda aaGccGa7aIikaiacSdiIWaGaiWoGi6cacGa7aIynaiadSdiHjpWDdG a7aUbaaSqaiWoGcGa7aI4maaqajWoGaOGamWoGgUcaRiacSdiI2aGa iWoGicdacWa7asOUdSMaiWoGdoeadGa7a2baaSqaiWoGcGa7aIOnaa qaiWoGcGa7aIOnaaaakiacSd4GnbWaiWoGDaaaleacSdOamWoGeA8a QbqaiWoGcGa7aI4maaaakiadSdiHjpWDdGa7a2baaSqaiWoGcGa7aI 4maaqaiWoGcGa7aIOmaaaakiadSdOHRaWkcWa7as4SdC2aiWoGBaaa leacSdOaiWoGikdaaeqcSdiakiadSdiHjpWDdGa7a2baaSqaiWoGcG a7aI4maaqaiWoGcGa7aIOmaaaakiacSdiIPaGamWoGgUcaRiacSdiI 0aGaiWoGi6cacGa7aIynaiacSd4GdbWaiWoGDaaaleacSdOaiWoGik daaeacSdOaiWoGikdaaaGccWa7asyYdC3aiWoGDaaaleacSdOaiWoG iodaaeacSdOaiWoGikdaaaGccGa7aIilaaaa@F9A4@ (90)

Отбрасывая неположительное слагаемое ε 1 μ 1 λ s,Ω 2 ε 2 μ 2 α Γ N 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeyOeI0IaeqyTdu2aaSbaaSqaaiaaigdaaeqaaO GaeqiVd02aaSbaaSqaaiaaigdaaeqaaebbfv3ySLgzGueE0jxyaGab aOGae8xjIaLaeq4UdWMae8xjIa1aa0baaSqaaiaadohacaaISaGaeu yQdCfabaGaaGOmaaaakiabgkHiTiabew7aLnaaBaaaleaacaaIYaaa beaakiabeY7aTnaaBaaaleaacaaIYaaabeaakiab=vIiqjabeg7aHj ab=vIiqnaaDaaaleaacqqHtoWrdaWgaaqaaiaad6eaaeqaaaqaaiaa ikdaaaaaaa@51CA@  в правой части (90), получаем

  φ Q 2 φ Q φ d Q +( η 3 2 + ξ 3 2 )ψ 1/2, Γ D 2 +( η 4 2 + ξ 4 2 ) φ d Q 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaqeeuuDJXwAKbsr4rNCHbaceaGae8xjIaLaeqOXdO Mae8xjIa1aa0baaSqaaiaadgfaaeaacaaIYaaaaOGaeyizImQae8xj IaLaeqOXdOMae8xjIa1aaSbaaSqaaiaadgfaaeqaaOGae8xjIaLaeq OXdO2aaWbaaSqabeaacaWGKbaaaOGae8xjIa1aaSbaaSqaaiaadgfa aeqaaOGaey4kaSIaaGikaiabeE7aOnaaDaaaleaacaaIZaaabaGaaG OmaaaakiabgUcaRiabe67a4naaDaaaleaacaaIZaaabaGaaGOmaaaa kiaaiMcacqWFLicucqaHipqEcqWFLicudaqhaaWcbaGaaGymaiaai+ cacaaIYaGaaGilaiabfo5ahnaaBaaabaGaamiraaqabaaabaGaaGOm aaaakiabgUcaRiaaiIcacqaH3oaAdaqhaaWcbaGaaGinaaqaaiaaik daaaGccqGHRaWkcqaH+oaEdaqhaaWcbaGaaGinaaqaaiaaikdaaaGc caaIPaGae8xjIaLaeqOXdO2aaWbaaSqabeaacaWGKbaaaOGae8xjIa 1aa0baaSqaaiaadgfaaeaacaaIYaaaaOGaaGOlaaaa@6E87@ (91)

Решив квадратичное относительно φ Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaqeeuuDJXwAKbsr4rNCHbaceaGae8xjIaLaeqOXdO Mae8xjIa1aaSbaaSqaaiaadgfaaeqaaaaa@3B30@  неравенство (91), выводим оценку

φ Q ( η 4 + ξ 4 +1) φ d Q +( η 3 + ξ 3 )ψ 1/2, Γ D . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaqeeuuDJXwAKbsr4rNCHbaceaGae8xjIaLaeqOXdO Mae8xjIa1aaSbaaSqaaiaadgfaaeqaaOGaeyizImQaaGikaiabeE7a OnaaBaaaleaacaaI0aaabeaakiabgUcaRiabe67a4naaBaaaleaaca aI0aaabeaakiabgUcaRiaaigdacaaIPaGae8xjIaLaeqOXdO2aaWba aSqabeaacaWGKbaaaOGae8xjIa1aaSbaaSqaaiaadgfaaeqaaOGaey 4kaSIaaGikaiabeE7aOnaaBaaaleaacaaIZaaabeaakiabgUcaRiab e67a4naaBaaaleaacaaIZaaabeaakiaaiMcacqWFLicucqaHipqEcq WFLicudaWgaaWcbaGaaGymaiaai+cacaaIYaGaaGilaiabfo5ahnaa BaaabaGaamiraaqabaaabeaakiaai6caaaa@5EF5@

Поскольку φ= φ 1 φ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqOXdOMaaGypaiabeA8aQnaaBaaaleaacaaIXa aabeaakiabgkHiTiabeA8aQnaaBaaaleaacaaIYaaabeaaaaa@3A62@ , φ d = φ 1 d φ 2 d MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqOXdO2aaWbaaSqabeaacaWGKbaaaOGaaGypai abeA8aQnaaDaaaleaacaaIXaaabaGaamizaaaakiabgkHiTiabeA8a QnaaDaaaleaacaaIYaaabaGaamizaaaaaaa@3D56@  и ψ= ψ 1 ψ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqiYdKNaaGypaiabeI8a5naaBaaaleaacaaIXa aabeaakiabgkHiTiabeI8a5naaBaaaleaacaaIYaaabeaaaaa@3A95@ , то последнее неравенство эквивалентно следующему:

  φ 1 φ 2 Q ( η 4 + ξ 4 +1) φ 1 d φ 2 d Q +( η 3 + ξ 3 ) ψ 1 ψ 2 1/2, Γ D . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaqeeuuDJXwAKbsr4rNCHbaceaGae8xjIaLaeqOXdO 2aaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaeqOXdO2aaSbaaSqaaiaa ikdaaeqaaOGae8xjIa1aaSbaaSqaaiaadgfaaeqaaOGaeyizImQaaG ikaiabeE7aOnaaBaaaleaacaaI0aaabeaakiabgUcaRiabe67a4naa BaaaleaacaaI0aaabeaakiabgUcaRiaaigdacaaIPaGae8xjIaLaeq OXdO2aa0baaSqaaiaaigdaaeaacaWGKbaaaOGaeyOeI0IaeqOXdO2a a0baaSqaaiaaikdaaeaacaWGKbaaaOGae8xjIa1aaSbaaSqaaiaadg faaeqaaOGaey4kaSIaaGikaiabeE7aOnaaBaaaleaacaaIZaaabeaa kiabgUcaRiabe67a4naaBaaaleaacaaIZaaabeaakiaaiMcacqWFLi cucqaHipqEdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaHipqEdaWg aaWcbaGaaGOmaaqabaGccqWFLicudaWgaaWcbaGaaGymaiaai+caca aIYaGaaGilaiabfo5ahnaaBaaabaGaamiraaqabaaabeaakiaai6ca aaa@6D61@ (92)

В случае, когда Q=Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadgfacaaI9a GaeuyQdCfaaa@3BB0@ , неравенство (92) имеет смысл L 2 (Ω) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadYeadaahaa WcbeqaaiaaikdaaaGccaaIOaGaeuyQdCLaaGykaaaa@3D3C@  -оценки устойчивости компоненты φ ^ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaWaaecaaeaacqaHgpGAaiaawkWaaaaa@341D@  решения ( φ ^ , λ ^ , α ^ ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikamaaHaaabaGaeqOXdOgacaGLcmaacaaISa WaaecaaeaacqaH7oaBaiaawkWaaiaaiYcadaqiaaqaaiabeg7aHbGa ayPadaGaaGykaaaa@3BC5@  задачи (71) относительно малых возмущений функций φ d L 2 (Ω) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqOXdO2aaWbaaSqabeaacaWGKbaaaOGaeyicI4 SaamitamaaCaaaleqabaGaaGOmaaaakiaaiIcacqqHPoWvcaaIPaaa aa@3AB6@  и ψ H 1/2 ( Γ D ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqiYdKNaeyicI4SaamisamaaCaaaleqabaGaaG ymaiaai+cacaaIYaaaaOGaaGikaiabfo5ahnaaBaaaleaacaWGebaa beaakiaaiMcaaaa@3BF0@ .

Если φ 1 d = φ 2 d MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqOXdO2aa0baaSqaaiaaigdaaeaacaWGKbaaaO GaaGypaiabeA8aQnaaDaaaleaacaaIYaaabaGaamizaaaaaaa@398C@  и ψ 1 = ψ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqiYdK3aaSbaaSqaaiaaigdaaeqaaOGaaGypai abeI8a5naaBaaaleaacaaIYaaabeaaaaa@37DA@ , то из неравенства (92) вытекает, что φ 1 = φ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqOXdO2aaSbaaSqaaiaaigdaaeqaaOGaaGypai abeA8aQnaaBaaaleaacaaIYaaabeaaaaa@37B8@  в Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamyuaaaa@3274@ . Тогда из (90) при μ 1 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeY7aTnaaBa aaleaacaaIXaaabeaakiaai6dacaaIWaaaaa@3CAE@  и μ 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeY7aTnaaBa aaleaacaaIYaaabeaakiaai6dacaaIWaaaaa@3CAF@  вытекает, что λ=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeq4UdWMaaGypaiaaicdaaaa@34D3@  в и α=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqySdeMaaGypaiaaicdaaaa@34BE@  на Γ N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeu4KdC0aaSbaaSqaaiaad6eaaeqaaaaa@3405@ , а из (70) при λ=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeq4UdWMaaGypaiaaicdaaaa@34D3@  и α=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqySdeMaaGypaiaaicdaaaa@34BE@  получаем, что φ=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqOXdOMaaGypaiaaicdaaaa@34DC@  или φ 1 = φ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqOXdO2aaSbaaSqaaiaaigdaaeqaaOGaaGypai abeA8aQnaaBaaaleaacaaIYaaabeaaaaa@37B8@  в . В таком случае при выполнении условия (89) решение задачи (71) единственно.

В общем случае, когда φ 1 d = φ 2 d MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqOXdO2aa0baaSqaaiaaigdaaeaacaWGKbaaaO GabGypayaawaGaeqOXdO2aa0baaSqaaiaaikdaaeaacaWGKbaaaaaa @39A9@ , с помощью неравенства

φ Q φ d Q φ Q 2 +(1/4) φ d Q 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaqeeuuDJXwAKbsr4rNCHbaceaGae8xjIaLaeqOXdO Mae8xjIa1aaSbaaSqaaiaadgfaaeqaaOGae8xjIaLaeqOXdO2aaWba aSqabeaacaWGKbaaaOGae8xjIa1aaSbaaSqaaiaadgfaaeqaaOGaey izImQae8xjIaLaeqOXdOMae8xjIa1aa0baaSqaaiaadgfaaeaacaaI YaaaaOGaey4kaSIaaGikaiaaigdacaaIVaGaaGinaiaaiMcacqWFLi cucqaHgpGAdaahaaWcbeqaaiaadsgaaaGccqWFLicudaqhaaWcbaGa amyuaaqaaiaaikdaaaGccaaISaaaaa@54DB@

вытекающего из неравенства Юнга, из (90) выводим, что

  ε 1 μ 1 λ s,Ω 2 + ε 2 μ 2 α Γ N 2 ( μ 0 /4) φ d Q 2 + μ 0 ( η 4 2 + ξ 4 2 ) φ d Q 2 + μ 0 ( η 3 2 + ξ 3 2 )ψ 1/2, Γ D 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqyTdu2aaSbaaSqaaiaaigdaaeqaaOGaeqiVd0 2aaSbaaSqaaiaaigdaaeqaaebbfv3ySLgzGueE0jxyaGabaOGae8xj IaLaeq4UdWMae8xjIa1aa0baaSqaaiaadohacaaISaGaeuyQdCfaba GaaGOmaaaakiabgUcaRiabew7aLnaaBaaaleaacaaIYaaabeaakiab eY7aTnaaBaaaleaacaaIYaaabeaakiab=vIiqjabeg7aHjab=vIiqn aaDaaaleaacqqHtoWrdaWgaaqaaiaad6eaaeqaaaqaaiaaikdaaaGc cqGHKjYOcaaIOaGaeqiVd02aaSbaaSqaaiaaicdaaeqaaOGaaG4lai aaisdacaaIPaGae8xjIaLaeqOXdO2aaWbaaSqabeaacaWGKbaaaOGa e8xjIa1aa0baaSqaaiaadgfaaeaacaaIYaaaaOGaey4kaSIaeqiVd0 2aaSbaaSqaaiaaicdaaeqaaOGaaGikaiabeE7aOnaaDaaaleaacaaI 0aaabaGaaGOmaaaakiabgUcaRiabe67a4naaDaaaleaacaaI0aaaba GaaGOmaaaakiaaiMcacqWFLicucqaHgpGAdaahaaWcbeqaaiaadsga aaGccqWFLicudaqhaaWcbaGaamyuaaqaaiaaikdaaaGccqGHRaWkcq aH8oqBdaWgaaWcbaGaaGimaaqabaGccaaIOaGaeq4TdG2aa0baaSqa aiaaiodaaeaacaaIYaaaaOGaey4kaSIaeqOVdG3aa0baaSqaaiaaio daaeaacaaIYaaaaOGaaGykaiab=vIiqjabeI8a5jab=vIiqnaaDaaa leaacaaIXaGaaG4laiaaikdacaaISaGaeu4KdC0aaSbaaeaacaWGeb aabeaaaeaacaaIYaaaaOGaaGOlaaaa@89F6@ (93)

Из формулы (93) вытекают следующие оценки устойчивости, которые мы запишем в обозначениях (56):

  λ 1 λ 2 s,Ω μ 0 /( ε 1 μ 1 ) (0.5+( η 4 + ξ 4 )) φ 1 d φ 2 d Q +( η 3 + ξ 3 ) ψ 1 ψ 2 1/2, Γ D , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaqeeuuDJXwAKbsr4rNCHbaceaGae8xjIaLaeq4UdW 2aaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Iaeq4UdW2aaSbaaSqaaiaa ikdaaeqaaOGae8xjIa1aaSbaaSqaaiaadohacaaISaGaeuyQdCfabe aakiabgsMiJoaakaaabaGaeqiVd02aaSbaaSqaaiaaicdaaeqaaOGa aG4laiaaiIcacqaH1oqzdaWgaaWcbaGaaGymaaqabaGccqaH8oqBda WgaaWcbaGaaGymaaqabaGccaaIPaaaleqaaOWaamWaaeaacaaIOaGa aGimaiaai6cacaaI1aGaey4kaSIaaGikaiabeE7aOnaaBaaaleaaca aI0aaabeaakiabgUcaRiabe67a4naaBaaaleaacaaI0aaabeaakiaa iMcacaaIPaGae8xjIaLaeqOXdO2aa0baaSqaaiaaigdaaeaacaWGKb aaaOGaeyOeI0IaeqOXdO2aa0baaSqaaiaaikdaaeaacaWGKbaaaOGa e8xjIa1aaSbaaSqaaiaadgfaaeqaaOGaey4kaSIaaGikaiabeE7aOn aaBaaaleaacaaIZaaabeaakiabgUcaRiabe67a4naaBaaaleaacaaI ZaaabeaakiaaiMcacqWFLicucqaHipqEdaWgaaWcbaGaaGymaaqaba GccqGHsislcqaHipqEdaWgaaWcbaGaaGOmaaqabaGccqWFLicudaWg aaWcbaGaaGymaiaai+cacaaIYaGaaGilaiabfo5ahnaaBaaabaGaam iraaqabaaabeaaaOGaay5waiaaw2faaiaaiYcaaaa@7EA8@ (94)

  α 1 α 2 Γ N μ 0 /( ε 2 μ 2 ) (0.5+( η 4 + ξ 4 )) φ 1 d φ 2 d Q +( η 3 + ξ 3 ) ψ 1 ψ 2 1/2, Γ D . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaqeeuuDJXwAKbsr4rNCHbaceaGae8xjIaLaeqySde 2aaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaeqySde2aaSbaaSqaaiaa ikdaaeqaaOGae8xjIa1aaSbaaSqaaiabfo5ahnaaBaaabaGaamOtaa qabaaabeaakiabgsMiJoaakaaabaGaeqiVd02aaSbaaSqaaiaaicda aeqaaOGaaG4laiaaiIcacqaH1oqzdaWgaaWcbaGaaGOmaaqabaGccq aH8oqBdaWgaaWcbaGaaGOmaaqabaGccaaIPaaaleqaaOWaamWaaeaa caaIOaGaaGimaiaai6cacaaI1aGaey4kaSIaaGikaiabeE7aOnaaBa aaleaacaaI0aaabeaakiabgUcaRiabe67a4naaBaaaleaacaaI0aaa beaakiaaiMcacaaIPaGae8xjIaLaeqOXdO2aa0baaSqaaiaaigdaae aacaWGKbaaaOGaeyOeI0IaeqOXdO2aa0baaSqaaiaaikdaaeaacaWG KbaaaOGae8xjIa1aaSbaaSqaaiaadgfaaeqaaOGaey4kaSIaaGikai abeE7aOnaaBaaaleaacaaIZaaabeaakiabgUcaRiabe67a4naaBaaa leaacaaIZaaabeaakiaaiMcacqWFLicucqaHipqEdaWgaaWcbaGaaG ymaaqabaGccqGHsislcqaHipqEdaWgaaWcbaGaaGOmaaqabaGccqWF LicudaWgaaWcbaGaaGymaiaai+cacaaIYaGaaGilaiabfo5ahnaaBa aabaGaamiraaqabaaabeaaaOGaay5waiaaw2faaiaai6caaaa@7DA2@ (95)

Из оценок (94), (95) и (70) вытекает, что

φ 1 φ 2 1,Ω ω 1 μ 0 /( ε 1 μ 1 ) + ω 2 μ 0 /( ε 2 μ 2 ) (0.5+( η 4 + ξ 4 )) φ 1 d φ 2 d Q + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaqeeuuDJXwAKbsr4rNCHbaceaGae8xjIaLaeqOXdO 2aaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaeqOXdO2aaSbaaSqaaiaa ikdaaeqaaOGae8xjIa1aaSbaaSqaaiaaigdacaaISaGaeuyQdCfabe aakiabgsMiJoaabmaabaGaeqyYdC3aaSbaaSqaaiaaigdaaeqaaOWa aOaaaeaacqaH8oqBdaWgaaWcbaGaaGimaaqabaGccaaIVaGaaGikai abew7aLnaaBaaaleaacaaIXaaabeaakiabeY7aTnaaBaaaleaacaaI XaaabeaakiaaiMcaaSqabaGccqGHRaWkcqaHjpWDdaWgaaWcbaGaaG OmaaqabaGcdaGcaaqaaiabeY7aTnaaBaaaleaacaaIWaaabeaakiaa i+cacaaIOaGaeqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaeqiVd02aaS baaSqaaiaaikdaaeqaaOGaaGykaaWcbeaaaOGaayjkaiaawMcaamaa deaabaGaaGikaiaaicdacaaIUaGaaGynaiabgUcaRiaaiIcacqaH3o aAdaWgaaWcbaGaaGinaaqabaGccqGHRaWkcqaH+oaEdaWgaaWcbaGa aGinaaqabaGccaaIPaGaaGykaiab=vIiqjabeA8aQnaaDaaaleaaca aIXaaabaGaamizaaaakiabgkHiTiabeA8aQnaaDaaaleaacaaIYaaa baGaamizaaaakiab=vIiqnaaBaaaleaacaWGrbaabeaakiabgUcaRa Gaay5waaaaaa@7934@

  + ( η 3 + ξ 3 ) ψ 1 ψ 2 1/2, Γ D + ω 3 ψ 1 ψ 2 1/2, Γ D , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaey4kaSYaamGaaeaacaaIOaGaeq4TdG2aaSbaaS qaaiaaiodaaeqaaOGaey4kaSIaeqOVdG3aaSbaaSqaaiaaiodaaeqa aOGaaGykaebbfv3ySLgzGueE0jxyaGabaiab=vIiqjabeI8a5naaBa aaleaacaaIXaaabeaakiabgkHiTiabeI8a5naaBaaaleaacaaIYaaa beaakiab=vIiqnaaBaaaleaacaaIXaGaaG4laiaaikdacaaISaGaeu 4KdC0aaSbaaeaacaWGebaabeaaaeqaaaGccaGLDbaacqGHRaWkcqaH jpWDdaWgaaWcbaGaaG4maaqabaGccqWFLicucqaHipqEdaWgaaWcba GaaGymaaqabaGccqGHsislcqaHipqEdaWgaaWcbaGaaGOmaaqabaGc cqWFLicudaWgaaWcbaGaaGymaiaai+cacaaIYaGaaGilaiabfo5ahn aaBaaabaGaamiraaqabaaabeaakiaaiYcaaaa@6031@ (96)

где параметры η i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeq4TdG2aaSbaaSqaaiaadMgaaeqaaaaa@3464@  и ξ i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqOVdG3aaSbaaSqaaiaadMgaaeqaaaaa@347B@ , i=1,2,3,4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamyAaiaai2dacaaIXaGaaGilaiaaikdacaaISa GaaG4maiaaiYcacaaI0aaaaa@3867@ , и параметры ω j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqyYdC3aaSbaaSqaaiaadQgaaeqaaaaa@3486@ , j=1,2,3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamOAaiaai2dacaaIXaGaaGilaiaaikdacaaISa GaaG4maaaa@36F4@ , определены соответственно в (70), (84) и (88).

Сформулируем один из основных результатов статьи в виде следующей теоремы.

Теорема 6.1. Пусть выполняются условия (i), (ii), (j 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaWaaSbaaSqaaiaaicdaaeqaaaaa@3284@  ), (jjj 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaWaaSbaaSqaaiaaicdaaeqaaaaa@3284@  ) и (89), k(φ)=κ φ 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaam4AaiaaiIcacqaHgpGAcaaIPaGaaGypaiabeQ 7aRjaayIW7cqaHgpGAdaahaaWcbeqaaiaaisdaaaaaaa@3C62@ . Пусть ( φ i , λ i , α i ) H 1 (Ω)×K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaaGikaiabeA8aQnaaBaaaleaacaWGPbaabeaaki aaiYcacqaH7oaBdaWgaaWcbaGaamyAaaqabaGccaaISaGaeqySde2a aSbaaSqaaiaadMgaaeqaaOGaaGykaiabgIGiolaadIeadaahaaWcbe qaaiaaigdaaaGccaaIOaGaeuyQdCLaaGykaiabgEna0kaadUeaaaa@4608@ — решения задачи (71), отвечающие заданным функциям φ i d L 2 (Ω) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqOXdO2aa0baaSqaaiaadMgaaeaacaWGKbaaaO GaeyicI4SaamitamaaCaaaleqabaGaaGOmaaaakiaaiIcacqqHPoWv caaIPaaaaa@3BA4@  и ψ i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeqiYdK3aaSbaaSqaaiaadMgaaeqaaaaa@3486@ , i=1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaamyAaiaai2dacaaIXaGaaGilaiaaikdaaaa@3580@ , и исходные данные задачи (71) или параметры m0, m1, m2 удовлетворяют условиям (89). Тогда справедливы оценки устойчивости (94)–(96) . 

В заключение отметим, что вывод оценок устойчивости оптимального управления, учитывающих возмущение граничной функции ψ, существенно сложнее вывода аналогичных оценок, отвечающих выбору ψ в качестве управления (см. [8]). В последнем случае отношение двойственности ζ,ψ Γ D MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaGaeyykJeUaeqOTdONaaGilaiabeI8a5jabgQYiXp aaBaaaleaacqqHtoWrdaWgaaqaaiaadseaaeqaaaqabaaaaa@3BE0@  легко оценивается через квадрат нормы ψ 1/2, Γ D MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqee0evGueE0jxyaibaieIcFD0xe9sqqrpepC0x bbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xj9as0=LqLs=xirFfpe ea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqa aeGabiWaaaGcbaqeeuuDJXwAKbsr4rNCHbaceaGae8xjIaLaeqiYdK Nae8xjIa1aaSbaaSqaaiaaigdacaaIVaGaaGOmaiaaiYcacqqHtoWr daWgaaqaaiaadseaaeqaaaqabaaaaa@3FA3@  с использованием соответствующего принципа минимума из системы оптимальности. Также отметим, что при доказательстве разрешимости экстремальной задачи и выводе оценок устойчивости ее оптимальных решений используются некоторые технические приемы работ [9, 26].

×

About the authors

Р. В. Бризицкий

ИПМ ДВО РАН; ДВФУ

Author for correspondence.
Email: mlnwizard@mail.ru
Russian Federation, 690041 Владивосток, ул. Радио, 7; 690922 Владивосток, о. Русский, п. Аякс, 10

А. А. Дончак

ДВФУ

Email: geliadonchak@mail.ru
Russian Federation, 690922 Владивосток, о. Русский, п. Аякс, 10

References

  1. Ito K., Kunish K. Estimation of the convection coefficient in elliptic equations // Inv. Probl. 1997. V. 14. P. 995–1013.
  2. Alekseev G. V., Tereshko D. A. On solvability of inverse extremal problems for stationary equations of viscous heat conducting fluid // J. Inv. Ill-Posed Probl. 1998. V. 9. P. 521–562.
  3. Nguyen P. A., Raymond J.-P. Control problems for convection–diffusion–reaction with control localized on manifolds // ESAIM Control Optim. Calc. Var. 2001. V. 6. P. 467–488.
  4. Алексеев Г. В., Вахитов И. С., Соболева О. В. Оценки устойчивости в задачах идентификации для уравнения конвекции–диффузии–реакции // Ж. вычисл. матем. и матем. физ. 2012. Т. 52. № 12. С. 2190–2205.
  5. Nguyen P. A., Raymond J.-P. Pointwise control of the Boussinesq system // Systems Control Lett. 2011. V. 60. No. 4. P. 249–255.
  6. Короткий А. И., Ковтунов Д. А. Оптимальное управление тепловой конвекцией // Тр. ИММ УрО РАН. 2010. Т. 16. № 5. С. 103–112.
  7. Короткий А. И., Литвиненко А. Л. Разрешимость одной смешанной краевой задачи для стационарной модели реакции-конвекции-диффузии // Тр. ИММ УрО РАН. 2018. Т. 24. № 1. С. 106–120.
  8. Бризицкий Р. В., Сарицкая Ж. Ю. Устойчивость решений экстремальных задач для нелинейного уравнения конвекции–диффузии–реакции при условии Дирихле // Ж. вычисл. матем. и матем. физ. 2016. Т. 56. № 12. С. 2042–2053.
  9. Бризицкий Р. В., Сарицкая Ж. Ю. Об устойчивости решений задач управления для уравнения реакции–диффузии–конвекции с сильной нелинейностью // Дифференц. ура-ния. 2017. Т. 53. № 4. С. 493–504.
  10. Brizitskii R. V., Saritskaya Z. Y. Optimization analysis of the inverse coefficient problem for the nonlinear convection–diffusion–reaction equation // J. Inv. Ill-Posed Probl. 2018. V. 9. P. 821–834.
  11. Бризицкий Р. В., Сарицкая Ж. Ю. Обратные коэффициентные задачи для нелинейного уравнения конвекции–диффузии–реакции // Изв. РАН. Сер. матем. 2018. Т. 82. Вып. 1. С. 17–33.
  12. Бризицкий Р. В., Сарицкая Ж. Ю. Задача граничного управления для нелинейного уравнения конвекции–диффузии–реакции // Ж. вычисл. матем. и матем. физ. 2018. Т. 58. № 12. С. 2139–2152.
  13. Alekseev G. V. Brizitskii R. V. Analysis of the boundary value and control problems for nonlinear reaction–diffusion–convection equation // Журнал СФУ. Сер. матем. и физ. 2021. Т. 14. № 4. С. 452–462.
  14. Бризицкий Р. В., Быстрова В. С., Сарицкая Ж. Ю. Теоретический анализ краевых и экстремальных задач для нелинейного уравнения реакции–диффузии–конвекции // Дифференц. ур-ния. 2021. Т. 57. № 5. С. 615–629.
  15. Chebotarev A. Yu., Grenkin G. V., Kovtanyuk A. E., Botkin N. D., Hoffmann K.-H. Diffusion approximation of the radiative-conductive heat transfer model with Fresnel matching conditions // Commun. Nonlinear Sci. Num. Simulat. 2018. V. 57. P. 290–298.
  16. Chebotarev A. Yu., Grenkin G. V., Kovtanyuk A. E., Botkin N. D., Hoffmann K.-H. Inverse problem with finite overdetermination for steady-state equations of radiative heat exchange // J. Math. Anal. Appl. 2018. V. 460. No. 2. P. 737–744.
  17. Chebotarev A. Yu., Kovtanyuk A. E., Botkin N. D. Problem of radiation heat exchange with boundary conditions of the Cauchy type // Commun. Nonlinear Sci. Num. Simulat. 2019. V. 75. P. 262–269.
  18. Kovtanyuk A. E., Chebotarev A. Yu., Botkin N. D., Hoffmann K.-H. Optimal boundary control of a steady–state heat transfer model accounting for radiative effects // J. Math. Anal. Appl. 2016. V. 439. P. 678–689.
  19. Чеботарев А. Ю. Задачи оптимального управления для уравнений сложного теплообмена c френелевскими условиями сопряжения // Ж. вычисл. матем. и матем. физ. 2022. Т. 62. № 3. С. 381–390.
  20. Lorca S. A., Boldrini J. L. Stationary solutions for generalized Boussinesq models // J. Dif. Eq. 1996. V. 124. P. 389–406.
  21. Belmiloudi A. Robin-type boundary control problems for the nonlinear Boussinesq type equations // J. Math. Anal. Appl. 2002. V. 273. P. 428–456.
  22. Bermudez A., Munoz-Sola R., Vazquez R. Analysis of two stationary magnetohydrodynamics systems of equations including Joule heating // J. Math. Anal. Appl. 2010. V. 368. P. 444–468.
  23. Барановский Е. С. Задача оптимального управления с обратной связью для сетевой модели движения вязкой жидкости // Матем. заметки. 2022. Т. 112. № 1. C. 31–47.
  24. Барановский Е. С. Задача оптимального стартового управления для двумерных уравнений Буссинеска // Изв. РАН. Сер. матем. 2022. Т. 86. № 2. С. 3–24.
  25. Барановский Е. С. Оптимальное граничное управление течением нелинейно-вязкой жидкости // Матем. сб. 2020. Т. 211. № 4. С. 27–43.
  26. Brizitskii R. V., Saritskaia Zh. Yu. Multiplicative control problems for nonlinear reaction-diffusion-convection model // J. Dyn. Contr. Sys. 2021. V. 27. No. 2. P. 379–402.
  27. Alekseev G. V., Brizitskii R. V. Theoretical analysis of boundary value problems for generalized Boussinesq model of mass transfer with variable coefficients // Symmetry 14. 2022. V. 12. Article ID2580.
  28. Ruzicka M., Shelukhin V., dos Santos M. M. Steady flows of Cosserat-Bingham fluids // Math. Meth. Appl. Sc. 2017. V. 40. P. 2746–2761.
  29. Mamontov A. E., Prokudin D. A. Global unique solvability of the initial-boundary value problem for the equations of one-dimensional polytropic flows of viscous compressible multifluids // J. Math. Fluid Mech. 2019. V. 21. № 1.
  30. Мамонтов А. Е., Прокудин Д. А. Разрешимость нестационарных уравнений трехмерного движения теплопроводных вязких сжимаемых двухкомпонентных жидкостей // Изв. РАН. Сер. матем. 2021. Т. 85. № 4. С. 147–204.
  31. Мамонтов А. Е., Прокудин Д. А. Стационарные решения краевой задачи для уравнений баротропного течения многокомпонентных сред // Сиб. электрон. матем. изв. 2022. Т. 19. № 2. С. 959–971.
  32. Wolf T. H. A property of measure in Rn and an application to unique continuation // Geomet. and Function. Anal. 1992. V. 2. No. 2. P. 225–284.
  33. Алексеев Г. В. Оптимизация в стационарных задачах тепломассопереноса и магнитной гидродинамики. М.: Научный мир, 2010. 412 с.
  34. Бризицкий Р. В., Максимова Н. Н., Масловская А. Г. Обратные задачи для диффузионно-дрейфовой модели зарядки неоднородного полярного диэлектрика // Ж. вычисл. матем. и матем. физ. 2023. Т. 63. № 9. С. 1537–1552.
  35. Фурсиков А. В. Оптимальное управление распределенными системами. Теория и приложения. Новосибирск: Научн. книга, 1999. 352 с.
  36. Лионс Ж.-Л. Некоторые методы решения нелинейных краевых задач. М.: Мир, 1972.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».