Construction of Solutions and Study of Their Closeness in L2 for Two Boundary Value Problems for a Model of Multicomponent Suspension Transport in Coastal Systems

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Three-dimensional models of suspension transport in coastal marine systems are considered. The associated processes have a number of characteristic features, such as high concentrations of suspensions (e.g., when soil is dumped on the bottom), much larger areas of suspension spread than the reservoir depth, complex granulometric (multifractional) content of suspensions, and mutual transitions between fractions. Suspension transport can be described using initial-boundary value diffusion–convection–reaction problems. According to the authors' idea, on a time grid constructed for the original continuous initial-boundary value problem, the right-hand sides are transformed with a “delay” so that the right-hand side concentrations of the components other than the underlying one (for which the initial-boundary value problem of diffusion–convection is formulated) are determined at the preceding time level. This approach simplifies the subsequent numerical implementation of each of the diffusion–convection equations. Additionally, if the number of fractions is three or more, the computation of each of the concentrations at every time step can be organized independently (in parallel). Previously, sufficient conditions for the existence and uniqueness of a solution to the initial-boundary value problem of suspension transport were determined, and a conservative stable difference scheme was constructed, studied, and numerically implemented for test and real-world problems. In this paper, the convergence of the solution of the delay-transformed problem to the solution of the original suspension transport problem is analyzed. It is proved that the differences between these solutions tends to zero at an O(τ) rate in the norm of the Hilbert space L2 as the time step t  approaches zero.

About the authors

V. V. Sidoryakina

Chekhov Taganrog Institute, Branch of Rostov State University of Economics

Email: cvv9@mail.ru
347936, Taganrog, Russia

A. I. Sukhinov

Don State Technical University

Author for correspondence.
Email: sukhinov@gmail.com
344000, Rostov-on-Don, Russia

References

  1. Lin B., Falconer R.A. Numerical modelling of three-dimensional suspended sediment for estuarine and coastal waters // J. Hydraulic Res. 1996. V. 34. № 4. P. 435–456. https://doi.org/10.1080/00221689609498470
  2. Марчук Г.И., Дымников В.П., Залесный В.Б. Математические модели в геофизической гидродинамике и численные методы их реализации. Л.: Гидрометеоиздат, 1987. 296 с.
  3. Петров И.Б. Проблемы моделирования природных и антропогенных процессов в Арктической зоне Российской Федерации // Матем. моделирование. 2018. Т. 30. № 7. С. 103–136; Math. Models Comput. Simul. 2019. V. 11. №. 2. P. 226–246.https://doi.org/10.1134/S2070048219020145
  4. Дымников В.П., Залесный В.Б. Основы вычислительной геофизической гидродинамики. М.: Геос, 2019, 448 с.
  5. Murillo J., Burguete J., Brufau P. García-Navarro P. Coupling between shallow water and solute flow equations: analysis and management of source terms in 2D // Inter. J. Numer. Meth. Fluid. 2005. V. 49. № 3. P. 267–299. https://doi.org/10.1002/fld.992
  6. Ballent A., Pando S., Purser A., Juliano M.F., Thomsen L. Modelled transport of benthic marine microplastic pollution in the Nazaré Canyon // Biogeo-sciences. 2013. V. 10. № 12. P. 7957–7970.https://doi.org/10.5194/bg-10-7957-2013
  7. Cao L., Liu S., Wang S., Cheng Q., Fryar A.E., Zhang Z., Yue F., Peng T. Factors controlling discharge-suspended sediment hysteresis in karst basins, southwest China // Implications for sediment management. J. Hydrol. 2021. V. 594. P. 125792. https://doi.org/10.1016/j.jhydrol.2020.125792
  8. Haddadchi A., Hicks M. Interpreting event-based suspended sediment concentration and flow hysteresis patterns // J. Soils Sed. 2021. V. 21. № 1. P. 592–612. https://doi.org/10.1007/s11368-020-02777-y
  9. Jirka G.H. Large scale flow structures and mixing processes in shallow flows // J. Hydr. Res. 2001. V. 39. № 6. P. 567–573. https://doi.org/10.1080/00221686.2001.9628285
  10. Афанасьев А.П., Качанов И.В., Шаталов И.М. Методики определения расстояний осаждения взвешенных частиц при дноуглубительных работах на судоходных реках // Вестник Гос. ун-та морск. и речн. флота им. адмирала С.О. Макарова. 2020. Т. 12. № 2. С. 310–322. https://doi.org/10.21821/2309-5180-2020-12-2-310-322
  11. Belyaev K., Chetverushkin B., Kuleshov A., Smirnov I. Correction of the model dynamics for the Northern seas using observational altimetry data // J. Phys.: Conf. Ser., IOP Publ. 2021. V. 2131. P. 022113. https://doi.org/10.1088/1742-6596/2131/2/022113
  12. Зиновьев Е.А., Китаев А.Б. О воздействии взвешенных частиц на гидрофауну // Изв. Самарского научн. центра РАН. 2015. Т. 17. № 5. С. 283–288.
  13. Yan H., Vosswinkel N., Ebbert S., Kouyi G.L., Mohn R., Uhl M., Bertrand-Krajewski J.-L. Numerical investigation of particles’ transport, deposition and resuspension under unsteady conditions in constructed stormwater ponds // Environ Sci Eur. 2020. V. 32 № 76. https://doi.org/10.1186/s12302-020-00349-y
  14. Сидорякина В.В., Сухинов А.И. Исследование корректности и численная реализация линеаризованной двумерной задачи транспорта наносов // Ж. вычисл. матем. и матем. физ. 2017. Т. 57. № 6. С. 985–1002; Comput. Math. Math. Phys. 2017. V. 57. № 6. P. 978–994. https://doi.org/10.7868/S0044466917060138
  15. Murphy J.C. Changing Suspended Sediment in United States Rivers and Streams: Linking Sediment Trends to Changes in Land Use/Cover, Hydrology and Climate // Hydrol. Earth Syst. Sci. 2020. V. 24. P. 991–1010. https://doi.org/10.5194/hess-24-991-2020
  16. Sukhinov A., Sidoryakina V. Two-Dimensional-One-Dimensional Alternating Direction Schemes for Coastal Systems Convection-Diffusion Problems // Mathematics. 2021. V. 9. P. 3267. https://doi.org/10.3390/math9243267
  17. Сухинов А.И., Чистяков А.Е., Сидорякина В.В., Проценко С.В., Атаян А.М. Локально-двумерные схемы расщепления для параллельного решения трехмерной задачи транспорта взвешенного вещества // Матем. физ. и компьют. моделирование. 2021. Т. 24. № 2. С. 38–53. https://doi.org/10.15688/mpcm.jvolsu.2021.2.4
  18. Сухинов А.И., Сидорякина В.В. Построение и исследование корректности математической модели транспорта и осаждения взвесей с учетом изменения рельефа дна // Вестник Донского гос. технич. ун‑та. 2018. Т. 18. № 4. С. 350–361. https://doi.org/10.23947/1992-5980-2018-18-4-350-361
  19. Sukhinov A.I., Sukhinov A.A., Sidoryakina V.V. Uniqueness of solving the problem of transport and sedimentation of multicomponent suspensions in coastal systems structures // J. Phys.: Conf. Ser., IOP Publ. 2020. V. 1479. № 1. P. 012081. https://doi.org/10.1088/1742-6596/1479/1/012081
  20. Ладыженская О.А., Солонников В.А., Уральцева Н.Н. Линейные и квазилинейные уравнения параболического типа. М.: Наука, 1967. 736 с.
  21. Владимиров В.С. Уравнения математической физики. Учебник. 4-е изд., испр. и доп. М.: Наука, 1981. 512 с.
  22. Тихонов А.Н., Самарский А.А. Уравнения математической физики. М.: Наука, 1977. 735 с.
  23. Golubev V.I. Pore space colmatation during the bimodal suspension flow through the porous medium // Computational Mathematics and Information Technologies. 2019. V. 2. № 2. P. 67–75. https://doi.org/10.23947/2587-8999-2019-2-2-67-75
  24. Голубев В.И., Михайлов Д.Н. Моделирование динамики фильтрации двухчастичной суспензии через пористую среду // Труды МФТИ. Труды Московского физико-технического института (национального исследовательского университета). 2011. Т. 3. № 2. С. 143–147.

Copyright (c) 2023 В.В. Сидорякина, А.И. Сухинов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies