Numerical and Analytical Investigation of Shock Wave Processes in Elastoplastic Media

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The Wilkins model for an elastoplastic medium is considered. A theoretical analysis of discontinuous solutions under the assumption of one-dimensional uniaxial strain is performed. In this approximation, the material equations for the deviator stress tensor components are integrated exactly, and only the conservative part of the governing equations remains, which makes it possible to derive a class of exact analytical solutions for the model. To solve the full nonconservative system of equations (without assuming the uniaxial strain), a Godunov-type numerical method is developed, which uses an approximate Riemann solver based on integrating the system of equations along a path in the phase space. A special choice of path is proposed that reduces the two-wave HLL approximation to the solution of a linear equations. Numerical and exact analytical solutions are compared for a number of problems with various regimes of shockwave processes.

About the authors

L. Wang

Lomonosov Moscow State University; Keldysh Institute of Applied Mathematics, Russian Academy of Sciences

Email: wanglujie@mail.ru
119991, Moscow, Russia; 125047, Moscow, Russia

I. S. Menshov

Lomonosov Moscow State University; Dukhov Automatics Research Institute; Keldysh Institute of Applied Mathematics, Russian Academy of Sciences

Email: imen57@mail.ru
119991, Moscow, Russia; 127030, Moscow, Russia; 125047, Moscow, Russia

A. A. Serezhkin

Dukhov Automatics Research Institute; Keldysh Institute of Applied Mathematics, Russian Academy of Sciences

Author for correspondence.
Email: aaserezhkin@gmail.com
127030, Moscow, Russia; 125047, Moscow, Russia

References

  1. Wilkins M.L. Calculation of elastic-plastic flow. M.: California Univ. Livermore Radiat. Lab., 1963.
  2. Godunov S.K., Romenskii E. Elements of continuum mechanics and conservation laws. M.: Springer Science & Business Media, 2003.
  3. Peshkov I., Romenski E. A hyperbolic model for viscous Newtonian flows // Continuum Mech. and Thermodynam. 2016. V. 28. P. 85–104.
  4. Kojic M., Bathe K.J. Studies of finite element procedures–Stress solution of a closed elastic strain path with stretching and shearing using the updated Lagrangian Jaumann formulation // Computers & Structures. 1987. V. 26. № 1–2. P. 175–179.
  5. Kulikovskii A.G., Pogorelov N.V., Semenov A.Y. Mathematical aspects of numerical solution of hyperbolic systems. M.: CRC Press, 2000.
  6. Fridrich D., Liska R., Wendroff B. Cell-centered Lagrangian Lax–Wendroff HLL hybrid method for elasto-plastic flows // Computers & Fluids. 2017. V. 157. P. 164–174.
  7. Maire P.H., Abgrall R., Breil J., et al. A nominally second-order cell-centered Lagrangian scheme for simulating elastic–plastic flows on two-dimensional unstructured grids // J. Comput. Phys. 2013. V. 235. P. 626–665.
  8. Peshkov I., Boscheri W., Loubère R., et al. Theoretical and numerical comparison of hyperelastic and hypoelastic formulations for Eulerian non-linear elastoplasticity // J. Comput. Phys. 2019. V. 387. P. 481–521.
  9. Pares C. Numerical methods for nonconservative hyperbolic systems: a theoretical framework // SIAM J. Numeric. Analys. 2006. V. 44. № 1. P. 300–321.
  10. Dumbser M., Castro M., Parés C., et al. ADER schemes on unstructured meshes for nonconservative hyperbolic systems: Applications to geophysical flows // Computers & Fluids. 2009. V. 38. № 9. P. 1731–1748.
  11. Munoz-Ruiz M.L., Parés C. Godunov method for nonconservative hyperbolic systems // J. ESAIM: Math. Model. and Numeric. Analys. 2007. V. 41. № 1. P. 169–185.
  12. Maso Dal, LeFloch P.G., and Murat F. Definition and weak stability of nonconservative products // J. Math. Pures Appl. 1995. V. 74. P. 483–548.
  13. Dumbser M., Hidalgo A., Castro M., et al. FORCE schemes on unstructured meshes II: Non-conservative hyperbolic systems // Comput. Meth. Appl. Mech. and Engineer. 2010. V. 199. № 9–12. P. 625–647.
  14. Dumbser M., Balsara D.S. A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems // J. Comput. Phys. 2016. V. 304. P. 275–319.
  15. Serezhkin A., Menshov I. On solving the Riemann problem for non-conservative hyperbolic systems of partial differential equations // Comput. Fluid. 2020. V. 210. P. 104675.
  16. Gavrilyuk S.L., Favrie N., Saurel R. Modelling wave dynamics of compressible elastic materials // J. Comput. Phys. 2008. V. 227. № 5. P. 2941–2969.
  17. Menshov I.S., Mischenko A.V., Serejkin A.A. Numerical modeling of elastoplastic flows by the Godunov method on moving Eulerian grids // Math. Model. and Comput. Simulat. 2014. V. 6. P. 127–141.
  18. Einfeltd B. On Godunov-type methods for gas dynamics // SIAM J. Numer. Analys. 1988. V. 25. № 2. P. 294–318.
  19. Toro E.F. Riemann solvers and numerical methods for fluid dynamics: a practical introduction. M.: Springer Science & Business Media, 2013.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (31KB)
3.

Download (32KB)
4.

Download (80KB)
5.

Download (48KB)
6.

Download (61KB)
7.

Download (42KB)

Copyright (c) 2023 Л. Ван, И.С. Меньшов, А.А. Серёжкин

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies