A Posteriori Identities for Measures of Deviation from Exact Solutions of Nonlinear Boundary Value Problems

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Functional identities that hold for deviations from the exact solutions of boundary value and initial boundary value problems with monotone operators are obtained. These identities hold for any function from the corresponding functional class that contains the exact solution of the problem. The left-hand side of an identity is the sum of terms that measure deviation of the approximate solution from the exact one. It is shown that these measures are natural characteristics of the accuracy of approximate solutions. In some cases, the right-hand side of the identity contains only known data of the problem and functions that characterize the approximate solution. Such an identity can be directly used for error control. In other cases, the right-hand side includes unknown functions. However, they can be eliminated to obtain fully computable two-sided bounds. In this case, it is necessary to use special functional inequalities relating the deviation measures to the properties of the monotone operator under consideration. As an example, such bounds and the exact values of the corresponding constants are obtained for a class of problems with the 
-Laplacian operator. It is shown that the identities and the resulting bounds make it possible to estimate the error of any approximation regardless of the method used to obtain it. In addition, they open a way for comparing exact solutions of problems with different data, which makes it possible to evaluate the errors of mathematical models, e.g., those that arise when the coefficients of a differential equation are simplified. In the first part of the paper, the theory and applications concern stationary models, and then the main results are extended to evolutionary models with monotone spatial operators.

About the authors

S. I. Repin

Saint Petersburg Department of the Steklov Mathematical Institute of the Russian Academy of Sciences; Saint Petersburg Polytechnical University

Author for correspondence.
Email: repin@pdmi.ras.ru
191023, Saint Petersburg, Russia; 195251, Saint Petersburg, Russia

References

  1. Rump S.M. Algorithms for verified inclusions–theory and practice. In: Reliability in Computation (ed. R.E. Moore), Academic Press, New York, 1988. P. 109–126.
  2. Trefethen L.N. Approximation Theory and Approximation Practice, Extended Edition. Society for Industrial and Applied Mathematics, 2019.
  3. Brandts J., Krizek M., Zhang Z. Paradoxes in numerical calculations // Neural Network World. 2016. V. 26. № 3. P. 317–330.
  4. Brezzi F., Fortin M. Mixed and Hybrid Finite Element Methods. Springer Ser. in Comput. Math., 15. New York, 1991.
  5. Ciarlet P. The finite element method for elliptic problems. North-Holland, Amsterdam, 1987.
  6. Babuška I., Rheinboldt W.C. Error estimates for adaptive finite element computations // SIAM J. Numer. Anal. 1978. V. 15. P. 736–754.
  7. Verfürth R. A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, Stuttgart, 1996.
  8. Zienkiewicz O.C., Zhu J.Z. A simple error estimator and adaptive procedure for practical engineering analysis // Int. J. Num. Meth. Engng. 1987. V. 24. P. 337–357.
  9. Repin S. A posteriori estimates for partial differential equations. Walter de Gruyter GmbH & Co. KG, Berlin, 2008.
  10. Repin S. Two-sided estimates of deviation from exact solutions of uniformly elliptic equations. In: Proceedings of the St. Petersburg Mathematical Society V. IX, P. 143–171, translation in Amer. Math. Soc. Transl. Ser. 2, 209, Amer. Math. Soc., Providence, RI, 2003.
  11. Repin S. A posteriori error estimation for variational problems with uniformly convex functionals // Math. Comp. 2000. V. 69 № 230. P. 481–500.
  12. Repin S., Sauter S. Accuracy of Mathematical Models, Tracts in Mathematics 33 Europ Math Soc, Berlin, 2020.
  13. Репин С.И. Тождество для отклонений от точного решения задачи и его следствия // Ж. вычисл. матем. и матем. физ. 2021. V. 61. № 12. P. 1986–2009.
  14. Ekeland I., Temam R. Convex analysis and variational problems. North-Holland, Amsterdam, 1976.
  15. Mikhlin S.G. Variational Methods in Mathematical Physics. Pergamon Press, Oxford, 1964.
  16. Репин С.И. Контроль точности приближенных решений одного класса сингулярно возмущенных краевых задач // Ж. вычисл. матем. и матем. физ. 2022. V. 62. № 11. P. 1822–1839.
  17. Prager W., Synge J.L. Approximations in elasticity based on the concept of functions space // Quart. Appl. Math. 1947. V. 5. P. 241–269.
  18. Braess D. Finite elements. Cambridge Univer. Press, Cambridge, 1997.
  19. Braess D., Schöberl J. Equilibrated residual error estimator for edge elements // Math. Comp. 2008. V. 77. № 262. P. 651–672.
  20. Clarkson J.A. Uniformly convex spaces// Transact. Am. Math. Soc. 1936. V. 40. P. 396–414.
  21. Соболев С.Л. Некоторые применения функционального анализа в математической физике. Ленинград: Изд.-во ЛГУ, 1950.
  22. Мосолов П.П., Мясников В.П. Механика жесткопластических сред. М.: Наука, 1981.
  23. Bildhauer M., Repin S. Estimates from the deviation from the minimizer for variational problems with power growth functionals // Зап. научн. сем. ПОМИ. 2006. V. 336. P. 5–24.
  24. Pastukhova S.E., Khripunova A.S. Gamma-closure of some classes of nonstandard convex integrands // J. Math. Sci. (N.Y.). 2011. V. 177. № 1. P. 83–108.
  25. Lindqvist P. Notes on the p-Laplace equation. University of Jyväskylä Depart. of Math. and Statist., Rep. 161, 2017.
  26. DiBenedetto E. Degenerate Parabolic Equations. Springer-Verlag, New York, 1993.
  27. Repin S. A posteriori error estimates for approximate solutions of variational problems with power growtn functionals // Зап. научн. сем. ПОМИ. 1997. V. 249. P. 244–255.
  28. Fuchs M., Repin S. A posteriori error estimates of functional type for variational problems related to generalized Newtonian fluids // Math. Meth. Appl. Sci. 2006. V. 29. № 18. P. 2225–2244.
  29. Пастухова C.Е. Апостериорные оценки отклонения от точного решения в вариационных задачах с нестандартными условиями коэрцитивности и роста // Алгебра и анализ. 2020. V. 32. № 1. P. 51–77.
  30. Repin S. Error identities for parabolic initial boundary value problems // Zap. Nauchn. Sem. POMI. 2021. V. 508. P. 147–172.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (69KB)
3.

Download (77KB)

Copyright (c) 2023 С.И. Репин

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies