Data Assimilation for the Two-Dimensional Ambipolar Diffusion Equation in Earth’s Ionosphere Model

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The problem of variational data assimilation for the INM RAS two-dimensional diffusion model of the Earth’s ionosphere F region is considered. Total integral electron contents along given paths are used as observation data. The general statement of the problem in differential form is formulated, and its solvability is analyzed. Based on a regularized statement, an iterative algorithm for solving the assimilation problem is constructed, and its convergence is demonstrated. A finite-dimensional approximation is constructed, the numerical solution of the problem is implemented, and the stability and convergence of the difference scheme are proved. The quality of the reconstruction of electron concentration fields is examined in test numerical experiments. It is shown that a weakly perturbed solution is reconstructed with acceptable accuracy for both stationary and evolutionary statements in the case of vertical and slant integration paths.

About the authors

V. P. Dymnikov

Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences; Fedorov Institute of Applied Geophysics

Email: ostanin.pavel@phystech.edu
119333, Moscow, Russia; 129128, Moscow, Russia

D. V. Kulyamin

Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences; Fedorov Institute of Applied Geophysics

Email: ostanin.pavel@phystech.edu
119333, Moscow, Russia; 129128, Moscow, Russia

P. A. Ostanin

Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Email: ostanin.pavel@phystech.edu
119333, Moscow, Russia; 141701, Dolgoprudnyi, Moscow oblast, Russia

V. P. Shutyaev

Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Author for correspondence.
Email: ostanin.pavel@phystech.edu
119333, Moscow, Russia; 141701, Dolgoprudnyi, Moscow oblast, Russia

References

  1. Дэвис К. Радиоволны в ионосфере. М.: Мир, 1973. 502 с.
  2. Иванов-Холодный Г.С., Никольский Г.М. Солнце и ионосфера: коротковолновое излучение Солнца и его воздействие на ионосферу. М.: Наука, 1969. 455 с.
  3. Kelley M.C. The Earth’s Ionosphere. Academic Press, 1989. 480 p.
  4. Deminov M.G., Deminova G.F., Zherebtsov G.A., Polekh N.M. Statistical properties of variability of the quiet ionosphere F2-layer maximum parameters over Irkutsk under low solar activity // Advances in Space Research. 2011. V. 51. № 5. P. 702–711.
  5. Ratovsky K.G., Medvedev A.V., Tolstikov M.V. Diurnal, seasonal and solar activity pattern of ionospheric variability from Irkutsk Digisonde data // Advances in Space Research. 2015. V. 55. № 8. P. 2041–2047.
  6. Miller A., Schmidt H., Bunzel F. Vertical coupling of the middle atmosphere during sudden stratospheric warming events // J. Atmos. Sol.-Terr. Phys. 2013. V. 97. P. 11–21.
  7. Yigit E., Koucki Knizova P., Georgieva K., Ward W. A review of vertical coupling in the Atmosphere–Ionosphere system: Effects of waves, sudden stratospheric warmings, space weather, and of solar activity // J. Atmos. Sol.-Terr. Phys. 2016. V. 141. P. 1–12.
  8. Pedatella N.M. et al. Multimodel comparison of the ionosphere variability during the 2009 sudden stratosphere warming // J. of Geophysical Research: Space Phys. 2016. V. 121. № 7. P. 7204–7225.
  9. Dymnikov V.P., Lykosov V.N., Volodin E. M. Mathematical simulation of earth system dynamics // Izvestiya. Atmospheric and Oceanic Phys. 2015. V. 51. № 3. P. 227–240.
  10. Kulyamin D.V., Volodin E.M. INM RAS coupled atmosphere–ionosphere general circulation model INMAIM (0–130 km) // Rus. J. of Num. Analys. and Math. Model. 2018. V. 33. № 6. P. 351–357.
  11. Кулямин Д.В., Дымников В.П. Моделирование климата нижней ионосферы // Известия Российской академии наук. Физика атмосферы и океана. 2015. Т. 51. № 3. С. 317–337.
  12. Kulyamin D.V., Dymnikov V.P. Numerical modelling of coupled neutral atmospheric general circulation and ionosphere D region // Rus. J. of Num. Analys. and Math. Model. 2016. V. 31. № 3. P. 159–171.
  13. Кулямин Д.В., Галин В.Я., Погорельцев А.И. Моделирование общей циркуляции термосферы с включением параметризации радиационных процессов // Метеорология и гидрология. 2015. Т. 40. № 6. С. 48–57.
  14. Кулямин Д.В., Останин П.А., Дымников В.П. Моделирование F слоя земной ионосферы. Решение уравнений амбиполярной диффузии // Матем. моделирование. 2019. Т. 31. № 4. С. 57–74.
  15. Дымников В.П., Кулямин Д.В., Останин П.А. Совместная модель глобальной динамики термосферы и ионосферы Земли // Известия Российской академии наук. Физика атмосферы и океана. 2020. Т. 56. № 3. С. 280–292.
  16. Hofmann-Wellenhof B., Lichtenegger H., Wasle E. Global Navigation Satellite Systems: GPS, GLONASS, Galileo and more. Wien, New York: Springer, 2008. 545 p.
  17. Parkinson B.W., Spilker J.J. Global Positioning System: Theory and Applications // Ciencia militar y naval UR. American Institute of Aeronautics & Astronautics 1996.
  18. Глобальная навигационная спутниковая система ГЛОНАСС. Интерфейсный контрольный документ. М.: 1995.
  19. Afraimovich E.L., Astafyeva E.I., Demyanov V.V., Edemskiy I.K., Gavrilyuk N.S., Ishin A.B., et al. A review of GPS/GLONASS studies of the ionospheric response to natural and anthropogenic processes and phenomena // J Space Weather Space Clim. 2013. V. 3. № A27.
  20. Rideout W., Coster A. Automated GPS processing for global total electron content data // GPS Solutions. 2006. V. 10 (3) P. 219–228. https://doi.org/10.1007/s10291-006-0029-5
  21. Brunini C., Meza A., Azpilicueta F., Zele M.A.V., Gende M., Daz A. A New Ionosphere Monitoring Technology Based on GPS // Astrophys. Space Sci. 2004. V. 290. P. 415–429.
  22. Bibl K. Evolution of the ionosonde // Annali di Geophysica. 1998. V. 41. № 5-6. P. 667–680.
  23. Reinisch B.W., Galkin I.A. Global Ionospheric Radio Observatory (GIRO) // Earth Planet Sp. 2011. V. 63. P. 377–381. https://doi.org/10.5047/eps.2011.03.001
  24. Schunk R.W., Scherliess L., Sojka J.J., Thompson D.C., Anderson D.N., Codrescu M., Minter C., Fuller-Rowell T.J., Heelis R.A., Hairston M., Howe B. Global assimilation of ionospheric measurements (GAIM) // Radio Sci. 2004. V. 39. № RS1S02.
  25. Wang C., Hajj G., Pi X., Rosen I.G., Wilson B. Development of the Global Assimilative IonosphericModel // R-adio Sci. 2004. V. 39. № RS1S06. https://doi.org/10.1029/2002RS00854
  26. Dear R., Mitchell C. GPS interfrequency biases and total electron content errors in ionospheric imaging over Europe // Radio Sci. 2006. V. 41. № RS6007. https://doi.org/10.1029/2005RS003269
  27. Angling M., Shaw J., Shukla A., Cannon P. Development of an HF selection tool based on the Electron Density Assimilative Model near-real-time ionosphere // Radio Sci. 2009. V. 44. № RS0A13. https://doi.org/10.1029/2008RS004022
  28. Fuller-Rowell T. et al. US-TEC: a new data assimilation product from the space environment center characterizing the ionospheric total electron content using real-time GPS data // Radio Sci. 2006. V. 41. https://doi.org/10.10292005RS003393
  29. Khattatov B. et al. Ionospheric nowcasting via assimilation of GPS measurements of ionospheric electron content in a global physics-based time-dependent model // Q. J. R. Meteorol. Soc. 2005. V. 131. P. 3543–3559.
  30. Ostanin P.A., Kulyamin D.V., Dymnikov V.P. Numerical modelling of the Earth’s ionosphere F region // IOP Conf. Series: Earth and Environmental Science. 2017. V. 96. № 1. P. 012011(1)–012011(11).
  31. Ostanin P.A. On the approximation of the diffusion operator in the ionosphere model with conserving the direction of geomagnetic field // Rus. J. of Num. Analys. and Math. Model. 2022. V. 37. № 1. P. 25–39.
  32. Лионс Ж.-Л. Оптимальное управление системами, описываемыми уравнениями с частными производными. М.: МИР, 1972. 416 с.
  33. Шутяев В.П. Операторы управления и итерационные алгоритмы в задачах вариационного усвоения данных. М.: Наука, 2001. 239 с.
  34. Агошков В.И. Методы оптимального управления и сопряженных уравнений в задачах математической физики. М. : ИВМ РАН, 2016. 244 с.
  35. Пармузин Е.И., Шутяев В.П. О численных алгоритмах решения одной задачи об усвоении данных // Ж. вычисл. матем. и матем. физ. 1997. V. 37. № 7. С. 816–827.
  36. Schunk R.W., Nagy A.F. IONOSPHERES Physics, Plasma Physics, and Chemistry. New York, United States: Cambridge University Press, 2009. 628 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (266KB)
3.

Download (120KB)
4.

Download (256KB)
5.

Download (111KB)
6.

Download (1MB)
7.

Download (1MB)
8.

Download (396KB)
9.

Download (334KB)

Copyright (c) 2023 В.П. Дымников, Д.В. Кулямин, П.А. Останин, В.П. Шутяев

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies