Reconstruction of Two Functions in the Model of Vibrations of a String One End of Which Is Placed in a Moving Medium

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper considers an inverse problem of determining the coefficients in the model of small transverse vibrations of a homogeneous finite string one end of which is placed in a moving medium and the other is free. The vibrations are simulated by a hyperbolic equation on an interval. One boundary condition has a nonclassical form. Additional data for solving the inverse problem are the values of the solution of the forward problem with a known fixed value of the spatial argument. In the inverse problem, it is required to determine the function in the nonclassical boundary condition and a functional factor on the right-hand side of the equation. Uniqueness and existence theorems for the inverse problem are proved. For the forward problem, conditions for unique solvability are established in a form that simplifies the analysis of the inverse problem. For the numerical solution of the inverse problem, an algorithm is proposed for the stage-by-stage separate reconstruction of the sought-for functions using the method of successive approximations for integral equations.

About the authors

O. A. Andreyanova

Lomonosov Moscow State University

Email: oksashka@gmail.com
119991, Moscow, Russia

A. Yu. Shcheglov

MSU-FPI University in Shenzhen, Longgang District, Dayunsirchen

Author for correspondence.
Email: shcheg@cs.msu.ru
Longgang District, Dayunsirchen 518172, Shenzhen, Guangdong, China

References

  1. Тихонов А.Н., Самарский А.А. Уравнения математической физики. М.: Гос. изд-во технико-теоретической литературы, 1953.
  2. Moiseev E.I., Kholomeeva A.A. Solvability of the mixed problem for the wave equation with a dynamic boundary condition // Differential Equations. 2012. V. 48. № 10. P. 1392–1397.
  3. Moiseev E.I., Kholomeeva A.A., Frolov A.A. Boundary displacement control for the oscillation process with boundary conditions of damping type for a time less than critical // J. of Math. Sci. 2021. V. 257. № 1. P. 74–84.
  4. Yanovskaya T.V., Asbel I.J. The determination of velocities in the upper mantle from the observations on p-waves // Geophys. J. Royal Astronom. Soc. 1964. V. 8. № 3. P. 313–318.
  5. Baev A.V., Glasko V.B. The solution of the inverse kinematic problem of seismology by means of a regularizing algorithm // J. Comput. Math. and Math. Phys. 1976. V. 16. № 4. P. 96–106.
  6. Belishev M.I. Boundary control in reconstruction of manifolds and metrics (the BC-method) // Inverse Problems. 1997. V. 13. № 5. P. R1–R45.
  7. Yilmaz O. Seismic data analysis. 1. Tulsa: SEG, 2001.
  8. Vasil’ev F.P., Kurzhanskij M.A., Razgulin A.V. On using Fourier method for solving a problem of string vibration control // Moscow University Comput. Math. and Cybernetics. 1993. № 2. P. 3–8.
  9. Il’in V.A., Moiseev E.I. Optimization of boundary controls of string vibrations // Russian Math. Surveys. 2005. V. 60. № 6. P. 1093–1119.
  10. Kapustin N.Yu., Kholomeeva A.A. Spectral solution of a boundary value problem for equation of mixed type // Lobachevskii Journal of Math. 2019. V. 40. № 7. P. 981–983.
  11. Gopinath B., Sondi M. Determination of the shape of the human vocal tract from acoustical measurements // Bell System Tech. J. 1970. V. 49. P. 1195–1214.
  12. Cannon J.R., Du Chateau P. An inverse problem for an unknown source term in a wave equation // SIAM J. A-ppl. Math. 1983. V. 43. № 3. P. 553–564.
  13. Zhang Guan Quan. On an inverse problem for 1-dimensional wave equation // Sci. China. Ser. A. Math., Phys., Astron. and Tech. Sci. 1989. V. 32. № 3. P. 257–274.
  14. Denisov A.M. Existence of a solution of the inverse coefficient problem for a quasilinear hyperbolic equation // J. Comput. Math. and Math. Phys. 2019. V. 59. № 4. P. 550–558.
  15. Тихонов А.Н., Гончарский А.В., Степанов В.В., Ягола А.Г. Регуляризирующие алгоритмы и априорная информация. М.: Наука, 1983.
  16. Денисов А.М. Введение в теорию обратных задач. М.: Изд-во Моск. ун-та, 1994.
  17. Свешников А.Г., Боголюбов А.Н., Кравцов В.В. Лекции по математической физике. М.: Изд-во Моск. ун-та, 1993.
  18. Lovitt W.V. Linear integral equations. New York: McGraw-Hill Book Company, 1924.
  19. Sergeev V.O. Regularization of the Volterra equation of the first kind // Dokl. Akad. Nauk SSSR. 1971. V. 197. № 3. P. 531–534.
  20. Апарцин А.С., Бакушинский А.Б. Приближенное решение интегральных уравнений Вольтерра I рода методом квадратурных сумм // В сб.: “Дифференц. и интегральные уравнения”. Вып. 1. Иркутск, Гос. ун-тет. 1972. С. 120–128.
  21. Magnitskii N.A. A method of regularizing Volterra equations of the first kind // Comput. Math. and Math. Phys. 1975. V. 15. № 5. P. 221–228.
  22. Магницкий Н.А. О приближенном решении некоторых интегральных уравнений Вольтерра 1 рода // Вестн. Московского университета. Серия 15. Вычисл. матем. и кибернетика. 1978. № 1. С. 91–98.
  23. Denisov A.M. On approximate solution of Volterra equation of the first kind // Comput. Math. and Math. Phys. 1975. V. 15. № 4. P. 237–239.

Copyright (c) 2023 О.А. Андреянова, А.Ю. Щеглов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies