Optimization of the Reachable Set of a Linear System with Respect to Another Set

Cover Page

Cite item

Full Text

Abstract

Given a linear controlled autonomous system, we consider the problem of including a convex compact set in the reachable set of the system in the minimum time and the problem of determining the maximum time when the reachable set can be included in a convex compact set. Additionally, the initial point and the time at which the extreme time is achieved in each problem are determined. Each problem is discretized on a grid of unit vectors and is then reduced to a linear programming problem to find an approximate solution of the original problem. Additionally, error estimates for the solution are found. The problems are united by a common ideology going back to the problem of finding the Chebyshev center.

About the authors

M. V. Balashov

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences

Email: balashov73@mail.ru
117997, Moscow, Russia

R. A. Kamalov

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences

Author for correspondence.
Email: balashov73@mail.ru
117997, Moscow, Russia

References

  1. Liapounoff A.A. Sur les fonctions-vecteurs completement additives // Izv. Akad. Nauk SSSR Ser. Mat. 1940. V. 4. № 6. P. 465–478.
  2. Lee E.B., Markus L. Foundations of Optimal Control Theory, John Wiley; 1st Printing, ed. 1967, 588 p.
  3. Aumann R. Integrals of set-valued functions // J. Math. Anal. Appl. 1965. V. 12. № 1. P. 1–12.
  4. Polyak B.T., Smirnov G. Large deviations for non-zero initial conditions in linear systems // Automatica. 2016. V. 74. P. 297–307.
  5. Aubin J.-P., Cellina A. Differential inclusions, Springer-Verlag, 1984.
  6. Aubin J.-P. A Survey of viability theory // SIAM J. Control and Optimizat. 1990. V. 28. № 4. P. 749–788.
  7. Kelley H.J. Gradient theory of optimal flight paths // ARSJ. 1960. V. 30. P. 947–953.https://doi.org/10.2514/8.5282
  8. Bryson A.E., Denham W.F. A steepest-ascent method for solving optimum programming problems // J. Appl. Mech. 1962. V. 29. P. 247–257; https://www.gwern.net/docs/ai/1962-bryson.pdf
  9. Eichmeir Ph., Lau Th., Oberpeilsteiner S., Nachbagauer K., Steiner W. The adjoint method for time-optimal control problems // J. Comput. Nonlinear Dynam. 2021. V. 16. № 2. P. 021003 (12 pages).https://doi.org/10.1115/1.404880810.1115/1.4048808
  10. Cannarsa P., Sinestrari C. Convexity properties of the minimum time function // Calcul. Variat. Part. Different. Equat. 1995. V. 3. № 3. P. 273–298; https://doi.org/10.1007/bf01189393
  11. Boltyanskii V.G. Mathematical methods of optimal control, Holt, Rinehart and Winston (1st ed.), 1971.
  12. Половинкин Е.С. Сильно выпуклый анализ // Матем. сб. 1996. Т. 187. № 2. С. 103–130.
  13. Le Guernic C., Girard A. Reachability analysis of linear systems using support functions // Nonlinear Analysis: Hybrid Systems. 2010. V. 4. P. 250–262.
  14. Althoff M., Frehse G., Girard A. Set propagation techniques for reachability analysis // Ann. Rev. Control, Robotics, and Autonomous Systems, Ann. Rev. 2021. V. 4. № 1. hal-03048155.https://doi.org/10.1146/annurev-control-071420-081941
  15. Serry M., Reissig G. Over-approximating reachable tubes of linear time-varying systems, arXiv:2102.04971v1.
  16. Kurzhanski A.B., Varaiya P. Dynamics and control of trajectory tubes, ser. Systems and Control: Foundations and Applications. Birkhauser/Springer, 2014, theory and computation.
  17. Балашов М.В. Покрытие множества выпуклым компактом: оценки погрешности и вычисление // Матем. заметки. 2022. Т. 112. № 3. С.337–349.
  18. Дистель Дж. Геометрия банаховых пространств, Киев, Вища школа, 1980.
  19. Frankowska H., Olech C. R-convexity of the integral of the set-valued functions, Contributions to analysis and geometry, Johns Hopkins Univ. Press, Baltimore, MD, 1981. P. 117–129.
  20. Половинкин Е.С., Балашов М.В. Элементы выпуклого и сильно выпуклого анализа, М., Физматлит, 2007. 2-е изд.
  21. Балашов М.В., Половинкин Е.С. -сильно выпуклые подмножества и их порождающие множества // Матем. сб. 2000. Т. 191. № 1. С. 27–64.
  22. Balashov M.V. On polyhedral approximations in an -dimensional space // Comput. Math. Math. Phys. 2016. V. 56. № 10. P. 1679–1685.
  23. Balashov M.V., Repovs D. Polyhedral approximations of strictly convex compacta // J. Math. Anal. Appl. 2011. V. 374. P. 529–537.
  24. Балашов М.В. Сильная выпуклость множеств достижимости линейных систем // Матем. сб. 2022. Т. 213. № 5. С. 30–49.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (434KB)
3.

Download (518KB)
4.

Download (770KB)
5.

Download (614KB)

Copyright (c) 2023 М.В. Балашов, Р.А. Камалов

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».