Адсорбция родамина ж из водных растворов частицами малослойного графена, получаемого методом самораспространяющегося высокотемпературного синтеза

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В работе исследована адсорбционная способность малослойного графена, полученного методом самораспространяющегося высокотемпературного синтеза, по отношению к родамину Ж. Показаны зависимости сорбционной емкости частиц малослойного графена от концентрации родамина Ж в водном растворе, температуры раствора и времени адсорбции. Обнаружено, что адсорбция родамина Ж на поверхности малослойного графена удовлетворительно описывается моделью Ленгмюра и Фрейндлиха. Данный процесс протекает в смешанно-диффузионном режиме и может быть описан кинетическим уравнением псевдовторого порядка.

Об авторах

Н. Д Подложнюк

Физико-технический институт им. А. Ф. Иоффе РАН

Email: acjournal.nauka.nw@yandex.ru
194064, St. Petersburg, Russia

А. А. Возняковский

Физико-технический институт им. А. Ф. Иоффе РАН

Email: acjournal.nauka.nw@yandex.ru
194064, St. Petersburg, Russia

А. П Возняковский

Научно-исследовательский институт синтетического каучука им. академика С. В. Лебедева

Email: acjournal.nauka.nw@yandex.ru
198035, St. Petersburg, Russia

С. В. Кидалов

Физико-технический институт им. А. Ф. Иоффе РАН

Email: acjournal.nauka.nw@yandex.ru
194064, St. Petersburg, Russia

Е. А Богачёва

Физико-технический институт им. А. Ф. Иоффе РАН

Автор, ответственный за переписку.
Email: acjournal.nauka.nw@yandex.ru
194064, St. Petersburg, Russia

Список литературы

  1. Zümriye A. Application of biosorption for the removal of organic pollutants: A Review // Proc. Biochem. 2005. V. 40 N 3. P. 997-1026. https://doi.org/10.1016/j.procbio.2004.04.008
  2. Hameed B. H., Din A. T. M., Ahmad A. L. Adsorption of methylene blue onto bamboo-based activated carbon: Kinetics and equilibrium studies //j. Hazard. Mater. 2007. V. 141. N 3. P. 819-825. https://doi.org/10.1016/j.jhazmat.2006.07.049
  3. Пьянова Л. Г., Корниенко Н. В., Седанова А. В., Лавренов А. В. Адсорбция ализаринового красного на техническом углероде // ЖПХ. 2021. Т. 94. № 5. С. 596-602. https://doi.org/10.31857/S0044461821050078
  4. Mingfei Z., Peng L. Adsorption of methylene blue from aqueous solutions by modified expanded graphite powder // Desalination. 2009. V. 249. N 1. P. 331-336. https://doi.org/10.1016/j.desal.2009.01.037
  5. Yunjin Y., Feifei X., Ming C., Zhongxiao X., Zhiwen Z. Adsorption behavior of methylene blue on carbon nanotubes // Bio. Tech. 2010. V. 101. N 9. P. 3040-3046. https://doi.org/10.1016/j.biortech.2009.12.042
  6. Hamdaoui O. Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick //j. Hazard. Mater. 2006. V. 135. N 1. P. 264-273. https://doi.org/10.1016/j.jhazmat.2005.11.062
  7. Liu T., Li Y., Dua Q., Suna J., Jiao Y., Yanga G., Wanga Z., Xia Y., Zhang W., Wang K., Zhu H., Wu D. Adsorption of methylene blue from aqueous solution by graphene // Col. Surf. B. 2012. V. 90. P. 197-203. https://doi.org/10.1016/j.colsurfb.2011.10.019
  8. Kong L., Enders A., Rahman T. S., Dowben P. A. Molecular adsorption on graphene //j. Phys. Condens. Matter. 2014. V. 26. P. 1-27. https://doi.org/10.1088/0953-8984/26/44/443001
  9. Кулакова И. И., Лисичкин Г. В. Перспективы применения графеновых наноматериалов: cорбенты, мембраны, газовые сенсоры (обзор) // ЖПХ. 2021. Т. 94. № 9. С. 1090-1103. https://doi.org/10.31857/S0044461821090012
  10. Zhao J., Wang Z., White J. C., Xing B. Graphene in the aquatic environment: Adsorption, dispersion, toxicity and transformation environ // Sci. Technol. 2014. V. 48. N 17. P. 9995-10009. https://doi.org/10.1021/es5022679
  11. Xu J., Cao Z., Zhang Y., Yuan Z., Lou Z., Xu X., Wang X. A Review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism // Chemosphere. 2018. V. 195. P. 351-364. https://doi.org/10.1016/j.chemosphere.2017.12.061
  12. Hossain F., Akther N., Zhou Y. Recent advancements in graphene adsorbents for wastewater treatment: Current status and challenges // Chin. Chem. Lett. 2020. V. 31. N 10. P. 2525-2538. https://doi.org/10.1016/j.cclet.2020.05.011
  13. Whitener K. E., Sheehanb E. Graphene synthesis // Diam. Relat. Mater. 2014. V. 46. P. 25-34. https://doi.org/10.1016/j.diamond.2014.04.006
  14. Voznyakovskii A., Vozniakovskii A., Kidalov S. New way of synthesis of few-layer graphene nanosheets by the self propagating high-temperature synthesis method from biopolymers // Nanomaterials. 2022. V. 12. N 4. ID 657. https://doi.org/10.3390/nano12040657
  15. Vozniakovskii A., Voznyakovskii A., Kidalov S., Osipov V. Structure and paramagnetic properties of graphene nanoplatelets prepared from biopolymers using self-propagating high-temperature synthesis //j. Struct. Chem. 2020. V. 65. P. 869-878. https://doi.org/10.1134/S0022476620050200
  16. Puskar L., Petit T. FTIR spectroscopy of nanodiamonds: Methods and interpretation // Diam. Relat. Mater. 2018. V. 89. P. 52-62. https://doi.org/10.1016/j.diamond.2018.08.005
  17. Li Y., Du Q., Wang X., Zhang P., Wang D., Wang Z., Xia Y. Removal of lead from aqueous solution by activated carbon prepared from Enteromorpha prolifera by zinc chloride activation //j. Hazard. Mater. 2010. V. 183. N 1. P. 583-589. https://doi.org/10.1016/j.jhazmat.2010.07.063
  18. Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum //j. Am. Chem. Soc. 1918. V. 40. N 9. P. 1361-1403. https://doi.org/10.1021/ja02242a004
  19. Shams K., Sidqi A., Kamal M., Patil S. Surfactant adsorption isotherms: A Review // ACS Omega. 2021. V. 6. N 48. P. 32342-32348. https://doi.org/10.1021/acsomega.1c04661
  20. Freundlich H. Über die Adsorption in Lösungen // Zeitschrift für physikalische chemie. 1907. V. 57. N 1. P. 385-470. https://doi.org/10.1515/zpch-1907-5723
  21. Murugan M., Jansi M., Subramaniam P., Subramanian E. Use of activated carbon prepared from Prosopis spicigera L. wood (PSLW) plant material for the removal of rhodamine 6G from aqueous solution // Desalination Water Treat. 2016. V. 57. N 7 P. 3048-3058. https://doi.org/10.1080/19443994.2014.986204
  22. Wang C., Feng C., Gao Y., Ma X., Wu Q., Wang Z. Preparation of a graphene-based magnetic nanocomposite for the removal of an organic dye from aqueous solution // Chem. Eng. J. 2011. V. 173. N 1. P. 92-97. https://doi.org/10.1016/j.cej.2011.07.041
  23. Dong Z., Wang D., Liu X., Pei X., Chena L., Jin J. Bio-inspired surface-functionalization of graphene oxide for the adsorption of organic dyes and heavy metal ions with a superhigh capacity //j. Mater. Chem. A. 2014. V. 2. P. 5034-5040. https://doi.org/10.1039/C3TA14751G
  24. Хамизовa Р. Х. О кинетическом уравнении псевдо-второго порядка в сорбционных процессах // ЖФХ. 2020. Т. 94. № 1. С. 125-130. https://doi.org/10.31857/S0044453720010148
  25. Крижановская О. О., Синяева Л. А., Карпов С. И., Селеменев В. Ф., Бородина Е. В., Рёсснер Ф. Кинетические модели при описании сорбции жирорастворимых физиологически активных веществ высокоупорядоченными неорганическими кремнийсодержащими материалами // Сорбцион. и хроматогр. процессы. 2014. Т. 14. № 5. С. 784-794. https://www.elibrary.ru/SXLCFF

© Российская академия наук, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах