Adsorption of Rhodamine G from Aqueous Solutions onto Particles of Few-Layer Graphene Prepared by Self-Propagating High-Temperature Synthesis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The ability of few-layer graphene prepared by self-propagating high-temperature synthesis to adsorb Rhodamine G was studied. The dependences of the sorption capacity of few-layer graphene particles on the Rhodamine G concentration in aqueous solution, solution temperature, and adsorption time were determined. The adsorption of Rhodamine G on the surface of few-layer graphene is satisfactorily described by the Langmuir and Freundlich models. The process occurs under mixed diffusion control and can be described by a pseudo-second-order rate equation.

About the authors

N. D. Podlozhnyuk

Ioffe Physicotechnical Institute, Russian Academy of Sciences

Email: acjournal.nauka.nw@yandex.ru
194064, St. Petersburg, Russia

A. A. Voznyakovskiy

Ioffe Physicotechnical Institute, Russian Academy of Sciences

Email: acjournal.nauka.nw@yandex.ru
194064, St. Petersburg, Russia

A. P. Voznyakovskiy

Lebedev Research Institute of Synthetic Rubber

Email: acjournal.nauka.nw@yandex.ru
198035, St. Petersburg, Russia

S. V. Kidalov

Ioffe Physicotechnical Institute, Russian Academy of Sciences

Email: acjournal.nauka.nw@yandex.ru
194064, St. Petersburg, Russia

E. A. Bogacheva

Ioffe Physicotechnical Institute, Russian Academy of Sciences

Author for correspondence.
Email: acjournal.nauka.nw@yandex.ru
194064, St. Petersburg, Russia

References

  1. Zümriye A. Application of biosorption for the removal of organic pollutants: A Review // Proc. Biochem. 2005. V. 40 N 3. P. 997-1026. https://doi.org/10.1016/j.procbio.2004.04.008
  2. Hameed B. H., Din A. T. M., Ahmad A. L. Adsorption of methylene blue onto bamboo-based activated carbon: Kinetics and equilibrium studies //j. Hazard. Mater. 2007. V. 141. N 3. P. 819-825. https://doi.org/10.1016/j.jhazmat.2006.07.049
  3. Пьянова Л. Г., Корниенко Н. В., Седанова А. В., Лавренов А. В. Адсорбция ализаринового красного на техническом углероде // ЖПХ. 2021. Т. 94. № 5. С. 596-602. https://doi.org/10.31857/S0044461821050078
  4. Mingfei Z., Peng L. Adsorption of methylene blue from aqueous solutions by modified expanded graphite powder // Desalination. 2009. V. 249. N 1. P. 331-336. https://doi.org/10.1016/j.desal.2009.01.037
  5. Yunjin Y., Feifei X., Ming C., Zhongxiao X., Zhiwen Z. Adsorption behavior of methylene blue on carbon nanotubes // Bio. Tech. 2010. V. 101. N 9. P. 3040-3046. https://doi.org/10.1016/j.biortech.2009.12.042
  6. Hamdaoui O. Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick //j. Hazard. Mater. 2006. V. 135. N 1. P. 264-273. https://doi.org/10.1016/j.jhazmat.2005.11.062
  7. Liu T., Li Y., Dua Q., Suna J., Jiao Y., Yanga G., Wanga Z., Xia Y., Zhang W., Wang K., Zhu H., Wu D. Adsorption of methylene blue from aqueous solution by graphene // Col. Surf. B. 2012. V. 90. P. 197-203. https://doi.org/10.1016/j.colsurfb.2011.10.019
  8. Kong L., Enders A., Rahman T. S., Dowben P. A. Molecular adsorption on graphene //j. Phys. Condens. Matter. 2014. V. 26. P. 1-27. https://doi.org/10.1088/0953-8984/26/44/443001
  9. Кулакова И. И., Лисичкин Г. В. Перспективы применения графеновых наноматериалов: cорбенты, мембраны, газовые сенсоры (обзор) // ЖПХ. 2021. Т. 94. № 9. С. 1090-1103. https://doi.org/10.31857/S0044461821090012
  10. Zhao J., Wang Z., White J. C., Xing B. Graphene in the aquatic environment: Adsorption, dispersion, toxicity and transformation environ // Sci. Technol. 2014. V. 48. N 17. P. 9995-10009. https://doi.org/10.1021/es5022679
  11. Xu J., Cao Z., Zhang Y., Yuan Z., Lou Z., Xu X., Wang X. A Review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism // Chemosphere. 2018. V. 195. P. 351-364. https://doi.org/10.1016/j.chemosphere.2017.12.061
  12. Hossain F., Akther N., Zhou Y. Recent advancements in graphene adsorbents for wastewater treatment: Current status and challenges // Chin. Chem. Lett. 2020. V. 31. N 10. P. 2525-2538. https://doi.org/10.1016/j.cclet.2020.05.011
  13. Whitener K. E., Sheehanb E. Graphene synthesis // Diam. Relat. Mater. 2014. V. 46. P. 25-34. https://doi.org/10.1016/j.diamond.2014.04.006
  14. Voznyakovskii A., Vozniakovskii A., Kidalov S. New way of synthesis of few-layer graphene nanosheets by the self propagating high-temperature synthesis method from biopolymers // Nanomaterials. 2022. V. 12. N 4. ID 657. https://doi.org/10.3390/nano12040657
  15. Vozniakovskii A., Voznyakovskii A., Kidalov S., Osipov V. Structure and paramagnetic properties of graphene nanoplatelets prepared from biopolymers using self-propagating high-temperature synthesis //j. Struct. Chem. 2020. V. 65. P. 869-878. https://doi.org/10.1134/S0022476620050200
  16. Puskar L., Petit T. FTIR spectroscopy of nanodiamonds: Methods and interpretation // Diam. Relat. Mater. 2018. V. 89. P. 52-62. https://doi.org/10.1016/j.diamond.2018.08.005
  17. Li Y., Du Q., Wang X., Zhang P., Wang D., Wang Z., Xia Y. Removal of lead from aqueous solution by activated carbon prepared from Enteromorpha prolifera by zinc chloride activation //j. Hazard. Mater. 2010. V. 183. N 1. P. 583-589. https://doi.org/10.1016/j.jhazmat.2010.07.063
  18. Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum //j. Am. Chem. Soc. 1918. V. 40. N 9. P. 1361-1403. https://doi.org/10.1021/ja02242a004
  19. Shams K., Sidqi A., Kamal M., Patil S. Surfactant adsorption isotherms: A Review // ACS Omega. 2021. V. 6. N 48. P. 32342-32348. https://doi.org/10.1021/acsomega.1c04661
  20. Freundlich H. Über die Adsorption in Lösungen // Zeitschrift für physikalische chemie. 1907. V. 57. N 1. P. 385-470. https://doi.org/10.1515/zpch-1907-5723
  21. Murugan M., Jansi M., Subramaniam P., Subramanian E. Use of activated carbon prepared from Prosopis spicigera L. wood (PSLW) plant material for the removal of rhodamine 6G from aqueous solution // Desalination Water Treat. 2016. V. 57. N 7 P. 3048-3058. https://doi.org/10.1080/19443994.2014.986204
  22. Wang C., Feng C., Gao Y., Ma X., Wu Q., Wang Z. Preparation of a graphene-based magnetic nanocomposite for the removal of an organic dye from aqueous solution // Chem. Eng. J. 2011. V. 173. N 1. P. 92-97. https://doi.org/10.1016/j.cej.2011.07.041
  23. Dong Z., Wang D., Liu X., Pei X., Chena L., Jin J. Bio-inspired surface-functionalization of graphene oxide for the adsorption of organic dyes and heavy metal ions with a superhigh capacity //j. Mater. Chem. A. 2014. V. 2. P. 5034-5040. https://doi.org/10.1039/C3TA14751G
  24. Хамизовa Р. Х. О кинетическом уравнении псевдо-второго порядка в сорбционных процессах // ЖФХ. 2020. Т. 94. № 1. С. 125-130. https://doi.org/10.31857/S0044453720010148
  25. Крижановская О. О., Синяева Л. А., Карпов С. И., Селеменев В. Ф., Бородина Е. В., Рёсснер Ф. Кинетические модели при описании сорбции жирорастворимых физиологически активных веществ высокоупорядоченными неорганическими кремнийсодержащими материалами // Сорбцион. и хроматогр. процессы. 2014. Т. 14. № 5. С. 784-794. https://www.elibrary.ru/SXLCFF

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies