Гидрирование фурфурола, 5-гидроксиметилфурфурола и левулиновой кислоты в присутствии Pd катализатора, нанесенного на мезопористый цирконосиликат

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Синтезирован катализатор на основе наночастиц Pd, нанесенных на мезопористый цирконосиликат. Катализатор испытан в гидрировании фурфурола, 5-гидроксиметилфурфурола и левулиновой кислоты при температурах 150–250°С и давлении водорода 5 МПа. Установлено, что температура процесса оказывает существенное влияние на распределение продуктов гидрирования фурфурола и 5-гидроксиметилфурфурола. Гидрирование левулиновой кислоты проходит селективно с образованием γ-валеролактона, конверсия значительно возрастает с ростом температуры.

Full Text

Restricted Access

About the authors

Екатерина Алексеевна Ролдугина

Московский государственный университет им. М. В. Ломоносова

Author for correspondence.
Email: maxbv04@gmail.com
ORCID iD: 0000-0002-9194-1097

Химический факультет, к.х.н.

Russian Federation, 119991, ГСП-1, г. Москва, Ленинские горы, д. 1, стр. 3

Максим Павлович Бороноев

Московский государственный университет им. М. В. Ломоносова

Email: maxbv04@gmail.com
ORCID iD: 0000-0001-6129-598X

Химический факультет, к.х.н.

Russian Federation, 119991, ГСП-1, г. Москва, Ленинские горы, д. 1, стр. 3

Искандер Ильгизович Шакиров

Московский государственный университет им. М. В. Ломоносова

Email: maxbv04@gmail.com
ORCID iD: 0000-0003-2029-693X
Russian Federation, 119991, ГСП-1, г. Москва, Ленинские горы, д. 1, стр. 3

Юлия Сергеевна Кардашева

Московский государственный университет им. М. В. Ломоносова

Email: maxbv04@gmail.com
ORCID iD: 0000-0002-6580-1082

Химический факультет, к.х.н.

Russian Federation, 119991, ГСП-1, г. Москва, Ленинские горы, д. 1, стр. 3

References

  1. Šivec R., Grilc M., Huš M., Likozar B. Multiscale modeling of (hemi) cellulose hydrolysis and cascade hydrotreatment of 5-hydroxymethylfurfural, furfural, and levulinic acid // Ind. Eng. Chem. Res. 2019. V. 58. N 35. P. 16018–16032. https://doi.org/10.1021/acs.iecr.9b00898
  2. Bozell J. J., Petersen G. R. Technology development for the production of diobased products from biorefinery carbohydrates — the US Department of Energyʹs «Top 10» revisited // Green Chem. 2010. V. 12. N 4. P. 539–554. https://doi.org/10.1039/B922014C
  3. Ivanchikova I. D., Zalomaeva O. V., Maksimchuk N. V., Stonkus O. A., Glazneva T. S., Chesalov Y. A., Shmakov A. N., Guidotti M., Kholdeeva O. A. Alkene epoxidation and thioether oxidation with hydrogen peroxide catalyzed by mesoporous zirconium-silicates // Catalysts. 2022. V. 12. N 7. ID 742. https://doi.org/10.3390/catal12070742
  4. Vasudevan S. V., Cai J., Bu Q., Mao H. Ordered mesoporous zirconium silicates as a catalyst for biofuel precursors synthesis // Mol. Catal. 2021. V. 516. ID 112003. https://doi.org/10.1016/j.mcat.2021.112003
  5. Kuwahara Y., Magatani Y., Yamashita H. Ru nanoparticles confined in Zr-containing spherical mesoporous silica containers for hydrogenation of levulinic acid and its esters into γ-valerolactone at ambient conditions // Catal. Today. 2015. V. 258. P. 262–269. https://doi.org/10.1016/j.cattod.2015.01.015
  6. Zhu H., Maheswari R., Ramanathan A., Subramaniam B. Evaporation-induced self-assembly of mesoporous zirconium silicates with tunable acidity and facile catalytic dehydration activity // Micropor. Mesopor. Mater. 2016. V. 223. P. 46–52. https://doi.org/10.1016/j.micromeso.2015.10.026
  7. Karpinski Z., Gandhi S. N., Sachtler W. M. H. Neopentane conversion catalyzed by Pd in L-zeolite: Effects of protons, ions, and zeolite structure // J. Catal. 1993. V. 141. N 2. P. 337–346. https://doi.org/10.1006/jcat.1993.1144
  8. Teranishi T., Miyake M. Size control of palladium nanoparticles and their crystal structures // Chem. Mater. 1998. V. 10. N 2. P. 594–600. https://doi.org/10.1021/cm9705808
  9. Choy J. H., Yoon J. B., Jung H., Park J. H. Zr K-Edge XAS and 29 Si MAS NMR studies on hexagonal mesoporous zirconium silicate // J. Porous Mater. 2004. V. 11. P. 123–129. https://doi.org/10.1023/B:JOPO.0000038007.82949.e1
  10. Gao X., Ding Y., Peng L., Yang D., Wan X., Zhou C., Liu W., Dai Y., Yang Y. On the effect of zeolite acid property and reaction pathway in Pd–catalyzed hydrogenation of furfural to cyclopentanone // Fuel. 2022. V. 314. ID 123074. https://doi.org/10.1016/j.fuel.2021.123074
  11. Piutti C., Quartieri F. The Piancatelli rearrangement: New applications for an intriguing reaction // Molecules. 2013. V. 18. N 10. P. 12290–12312. https://doi.org/10.3390/molecules181012290
  12. Nieto Faza O., Silva López C., Álvarez R., de Lera Á. R. Theoretical study of the electrocyclic ring closure of hydroxypentadienyl cations // Chem. Eur. J. 2004. V. 10. N 17. P. 4324–4333. https://doi.org/10.1002/chem.200400037
  13. Ohyama J., Kanao R., Ohira Y., Satsuma A. The effect of heterogeneous acid–base catalysis on conversion of 5-hydroxymethylfurfural into a cyclopentanone derivative // Green Chem. 2016. V. 18. N 3. P. 676–680. https://doi.org/10.1039/C5GC01723H
  14. Tong Z., Gao R., Li X., Guo L., Wang J., Zeng Z., Deng Q., Deng S. Highly controllable hydrogenative ring rearrangement and complete hydrogenation of biobased furfurals over Pd/La2B2O7 (B = Ti, Zr, Ce) // ChemCatChem. 2021. V. 13. N 21. P. 4549–4556. https://doi.org/10.1002/cctc.202101063
  15. Dutta S., Bhat N. S. Catalytic transformation of biomass-derived furfurals to cyclopentanones and their derivatives: A review // ACS Omega. 2021. V. 6. N 51. P. 35145–35172. https://doi.org/10.1021/acsomega.1c05861
  16. Nishimura S., Ohmatsu S., Ebitani K. Selective synthesis of 3-methyl-2-cyclopentenone via intramolecular aldol condensation of 2, 5-hexanedione with γ-Al2O3/AlOOH nanocomposite catalyst // Fuel Process. Technol. 2019. V. 196. ID 106185. https://doi.org/10.1016/j.fuproc.2019.106185
  17. Upare P. P., Lee J.-M., Hwang D. W., Halligudi S. B., Hwang Y. K., Chang J.-S. Selective hydrogenation of levulinic acid to γ-valerolactone over carbon-supported noble metal catalysts // J. Ind. Eng. Chem. 2011. V. 17. N 2. P. 287–292. https://doi.org/10.1016/j.jiec.2011.02.025
  18. Yan Z.-P., Lin L., Liu S. Synthesis of γ-valerolactone by hydrogenation of biomass-derived levulinic acid over Ru/C catalyst // Energy Fuels. 2009. V. 23. N 8. P. 3853–3858. https://doi.org/10.1021/ef900259h
  19. Wright W. R., Palkovits R. Development of heterogeneous catalysts for the conversion of levulinic acid to γ-valerolactone // ChemSusChem. 2012. V. 5. N 9. P. 1657–1667. https://doi.org/10.1002/cssc.201200111
  20. Alonso D. M., Wettstein S. G., Dumesic J. A. Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass // Green Chem. 2013. V. 15. N 3. P. 584–595. https://doi.org/10.1039/C3GC37065H

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Nitrogen adsorption–desorption isotherms and pore size distribution of mesoporous zirconosilicate and Pd catalyst supported on mesoporous zirconosilicate.

Download (128KB)
3. Fig. 2. Spectra of temperature-programmed ammonia desorption of mesoporous zirconosilicate and Pd catalyst supported on mesoporous zirconosilicate.

Download (99KB)
4. Fig. 3. X-ray diffraction pattern (a) and small-angle scattering pattern (b) of a Pd catalyst supported on mesoporous zirconosilicate.

Download (195KB)
5. Fig. 4. Microphotographs (a, b) of a Pd catalyst supported on mesoporous zirconosilicate, and a diagram of the size distribution of Pd nanoparticles (c).

Download (925KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies