Углерод-минеральные материалы из сапропеля как носители для катализаторов гидродехлорирования

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

В работе представлены результаты исследования возможности применения углерод-минеральных материалов, полученных из доступного сырья сапропеля, в качестве носителей для палладиевых катализаторов реакции гидродехлорирования хлорбензола. Селективное образование целевого продукта бензола было достигнуто при достаточно низком содержании палладия (0.5 мас%) в мягких условиях жидкофазной реакции (2 МПа, 90°С) при конверсии хлорбензола 50–60% (время реакции 5 ч). Показано, что катализатор на носителе из сапропеля минерального типа после его активации в среде водяного пара, обладающий мезопористой структурой, продемонстрировал активность выше, чем катализаторы на основе органического сапропеля.

Full Text

Restricted Access

About the authors

Елена Николаевна Терехова

Институт катализа СО РАН

Email: e.terechova@ihcp.ru
ORCID iD: 0000-0001-8555-8043

Центр новых химических технологий, к.х.н.

Russian Federation, 644040, г. Омск, ул. Нефтезаводская, д. 54

Ольга Борисовна Бельская

Институт катализа СО РАН

Author for correspondence.
Email: e.terechova@ihcp.ru
ORCID iD: 0000-0002-7650-880X

Центр новых химических технологий, к.х.н.

Russian Federation, 644040, г. Омск, ул. Нефтезаводская, д. 54

References

  1. Rani M., Shanker U., Jassal V. Recent strategies for removal and degradation of persistent & toxic organochlorine pesticides using nanoparticles: A review // J. Environ. Manag. 2017. V. 190. P. 208–222. http://dx.doi.org/10.1016/j.jenvman.2016.12.068
  2. El-Sheikh M. A., Hadibarata T., Yuniarto A., Sathishkumar P., Abdel-Salam E. M., Alatar A. A. Role of nanocatalyst in the treatment of organochlorine compounds — A review // Chemosphere. 2021. V. 268. ID 128873. https://doi.org/10.1016/j.chemosphere.2020.128873
  3. Sanad M. M. S., Gaber S. E., El-Aswar E. I., Farahat M. M. Graphene-magnetite functionalized diatomite for efficient removal of organochlorine pesticides from aquatic environment // J. Environ. Manag. 2023. V. 330. ID 117145. https://doi.org/10.1016/j.jenvman.2022.117145
  4. Dzhabarov E. G., Petrukhina N. N., Zakharyan E. M. Hydrodechlorination of a two-component mixture of chloroaromatic compounds in the presence of an unsupported sulfide catalyst // Mendeleev Commun. 2023. V. 33. N 6. P. 839–840. https://doi.org/10.1016/j.mencom.2023.10.033
  5. Mishakov I. V., Bauman Y. I., Brzhezinskaya M., Netskina O. V., Shubin Y. V., Kibis L. S., Stoyanovskii V. O., Larionov K. V., Serkova A. N., Vedyagin A. A. Water purification from chlorobenzenes using heteroatom-functionalized carbon nanofibers produced on self-organizing Ni–Pd catalyst // J. Environ. Chem. Eng. 2022. V. 10. N 3. ID 107873. https://doi.org/10.1016/j.jece.2022.107873
  6. Klokov S. V., Lokteva E. S., Golubina E. V., Maslakov K. I., Levanov A. V., Chernyak S. A., Likholobov V. A. Effective Pd/C catalyst for chlorobenzene and hexachlorobenzene hydrodechlorination by direct pyrolysis of sawdust impregnated with palladium nitrate // Catal. Commun. 2016. V. 77. P. 37–41. https://doi.org/10.1016/j.catcom.2016.01.013
  7. Zhu H., Xu F., Zhao J., Jia L., Wu K. Catalytic hydrodechlorination of monochloroacetic acid in wastewater using Ni–Fe bimetal prepared by ball milling // Environ. Sci. Pollut. Res. 2015. V. 22. P. 14299–14306. https://doi.org/10.1007/s11356-015-4675-4
  8. Ardila A. A. N., Reyes J., Arriola E., Hernández J. A., Fuentes G. A. Liquid-phase chloroform hydrodechlorination catalyzed by Pd/TiO2–Na // Appl. Catal. A: General. 2015. V. 497. P. 211–215. https://doi.org/10.1016/j.apcata.2015.02.045
  9. Lokteva E. S., Golubina E. V., Antonova M. V., Klokov S. V., Maslakov K. I., Egorov A. V., Likholobov V. A. Chlorobenzene hydrodechlorination catalyst prepared via the pyrolysis of sawdust impregnated with palladium nitrate // Kinet. Catal. 2015. V. 56. N 6. P. 764–773. https://doi.org/10.1134/S0023158415060099.
  10. Mendes L. D., Bernardi G., Elias W. C., de Oliveira D. C., Domingos J. B., Carasek E. A green approach to DDT degradation and metabolite monitoring in water comparing the hydrodechlorination efficiency of Pd, Au-on-Pd and Cu-on-Pd nanoparticle catalysis // Sci. Total. Environ. 2021. V. 760. ID 143403. https://doi.org/10.1016/j.scitotenv.2020.143403
  11. Liu S., Fernandez-Ruiz C., Iglesias-Juez A., Martin-Martinez M., Bedia J., Marini C., Agostini G., Rodriguez J. J., Gómez-Sainero L. M. Structure sensitivity reaction of chloroform hydrodechlorination to light olefins using Pd catalysts supported on carbon nanotubes and carbon nanofibers // J. Colloid. Interf. Sci. 2023. V. 648. P. 427–439. https://doi.org/10.1016/j.jcis.2023.05.169
  12. Netskina O. V., Komova O. V., Tayban E. S., Oderova G. V., Mukha S. A., Kuvshinov G. G., Simagina V. I. The influence of acid treatment of carbon nanofibers on the activity of palladium catalysts in the liquid-phase hydrodechlorination of dichlorobenzene // Appl. Catal. A: General. 2013. V. 467. P. 386–393. http://dx.doi.org/10.1016/j.apcata.2013.07.046
  13. Simagina V. I., Netskina O. V., Tayban E. S., Komova O. V., Grayfer E. D., Ischenko A. V., Pazhetnov E. M. The effect of support properties on the activity of Pd/C catalysts in the liquid-phase hydrodechlorination of chlorobenzene // Appl. Catal. A: General. 2010. V. 379. N 1–2. P. 87–94. http://dx.doi.org/10.1016/j.apcata.2010.03.011
  14. Terekhova E. N., Lavrenov A. V., Shilova A. V., Kireeva T. V., Saveleva G. G., Trenikhin M. V., Belskaya O. B. Preparation of porous carbon–mineral materials by chemical treatment of sapropel carbonization products // Russ. J. Appl. Chem. 2017. V. 90. N 12. P. 1990–1997. https://doi.org/10.1134/S107042721712014X.
  15. Krivonos O. I., Belskaya O. B. A New waste-free integrated approach for sapropel processing using supercritical fluid extraction // J. Supercritical Fluids. 2020. V. 166. ID 104991. https://doi.org/10.1016/j.supflu.2020.104991
  16. Штин С. М. Озерные сапропели и их комплексное освоение. М.: МГГУ, 2005. C. 305–324.
  17. Terekhova E. N., Gulyaeva T. I., Trenikhin M. V., Muromtsev I. V., Nepomnyashchii A. A., Belskaya O. B. Sapropel-based carbon mineral materials as catalyst supports for transformation of large Organic molecules // Kinet. Catal. 2018. V. 59. N 2. P. 237–245. https://doi.org/10.1134/S0023158418020143.
  18. Terekhova E. N., Belskaya O. B. Synthesis and study of bimetallic catalysts based on carbon-mineral materials derived from sapropel // AIP Conf. Proceedings. 2019. V. 2141. ID 020014. https://doi.org/10.1063/1.5122033
  19. Kokhanovskaya O. A., Baklanova O. N., Knyazheva O. A., Lavrenov A. V., Drozdov V. A., Leontʹyeva N. N., Trenikhin M. V., Syrieva A. V. Thermal-oxidative treatment to control the texture characteristics of carbon black // Chem. Sustain. Develop. 2023. V. 31. P. 32–39. https://doi.org/10.15372/CSD2023.
  20. Park J., Regalbuto J. R. A simple, accurate determination of oxide PZC and the strong buffering effect of oxide surfaces at incipient wetness // J. Colloid Interface Sci. 1995. V. 175. N 1. P. 239–252. https://doi.org/10.1006/jcis.1995.1452
  21. Boehm H. P. Some aspects of the surface chemistry of carbon blacks and other carbons // Carbon. 1994. V. 32. N 5. P. 759–769. https://doi.org/10.1016/0008-6223(94)90031-0
  22. Mironenko R. M., Belskaya O. B., Solodovnichenko V. S., Gulyaeva T. I., Kryazhev Y. G., Likholobov V. A. Palladium hydrogenation catalyst based on a porous carbon material obtained upon the dehydrochlorination of a chloro polymer // Kinet. Catal. 2016. V. 57. N 2. P. 229–233. https://doi.org/10.1134/S0023158416020063.
  23. Okhlopkova L. B., Lisitsyn A. S., Likholobov V. A., Gurrath M., Boehm H. P. Properties of Pt/C and Pd/C catalysts prepared by reduction with hydrogen of adsorbed metal chlorides: Influence of pore structure of the support // Appl. Catal. A: General. 2000. V. 204. P. 229–240. https://doi.org/10.1016/S0926-860X(00)00534-2
  24. Okhlopkova L. B., Lisitsyn A. S., Boehm H. P., Likholobov V. A. On metal blocking in micropores of carbon supports // React. Kinet. Catal. Lett. 2000. V. 71. P. 165–171. https://doi.org/10.1023/A:1010367123342
  25. Плаксин Г. В. Пористые углеродные материалы типа Сибунита // Химия в интересах устойчив. развития. 2001. Т. 9. № 5. С. 609–620. https://www.elibrary.ru/rxjejr
  26. Mekhaev A. V., Pervova M. G., Taran O. P., Simakova I. L., Parmon V. N., Samorukova M. A., Boyarskii V. P., Zhesko T. E., Saloutin V. I., Yatlulk Y. Liquid-phase dechlorination of toxic man-made products using nanodispersed palladium catalysts Sibunit // Chem. Sustain. Develop. 2011. V. 19. N 2. P. 173–180. https://www.elibrary.ru/ypcdaf.
  27. Mekhaev A. V., Butin F. N., Pervova M. G., Taran O. P., Simakova I. L., Parmon V. N. Рd/sibunit as efficient hydrogen transfer catalyst in hydrodechlorination of polychlorobiphenyls // Russ. J. Org. Chem. 2014. V. 50. N 6. P. 900–901. https://doi.org/10.1134/S1070428014060244.
  28. Simagina V. I., Tayban E. S., Grayfer E. D., Gentsler A. G., Komova O. V., Netskina O. V. Liquid-phase hydrodechlorination of chlorobenzene by molecular hydrogen: The influence of reaction medium on process efficiency // Pure Appl. Chem. 2009. V. 81. N 11. P. 2107–2114. https://doi.org/10.1351/PAC-CON-08-10-12

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Images obtained by transmission electron microscopy of samples of carbon-mineral materials synthesized from mineral (a, b) and organic (c, d) sapropels.

Download (807KB)
3. Fig. 2. Hydrogen absorption curves (2 MPa, 90°C, 30 min, ethanol:water = 1:1) using palladium catalysts supported on a carbon-mineral carrier, obtained: 1 - carbonization of mineral-type sapropel; 2 - carbonization of mineral type sapropel, activated by water vapor; 3 - carbonization of organic type sapropel; 4 - carbonization of organic type sapropel, activated by water vapor; 5 — carbonization of mineral-type sapropel (the hydrodechlorination reaction was carried out: 1–4 — in the presence of NaOH, 5 — in the absence of NaOH).

Download (82KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies