Diethyl Sulfide Oxidation with Sodium Peroxoborate in Water–Acetonitrile System. Kinetics and Mechanism

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In aqueous solutions of acetonitrile (1 vol%), the rate of oxidation of diethyl sulfide with sodium peroxoborate, Na2[B2(O2)2(OH)4]∙6H2O, in the pH range of 8.5–11 is significantly higher than the oxidation rate in water and exceeds the rate of reaction of Et2S with hydrogen peroxide in the H2O–MeCN system. The reaction order with respect to the substrate, which is close to zero, suggests that the limiting stage of the process is the reaction of peroxoborate anions with MeCN, leading to the formation of active boron peroxyimidates, which then react in a rapid stage with Et2S.

Texto integral

Acesso é fechado

Sobre autores

А. Liubymova

L. M. Litvinenko Institute of Physical Organic and Coal Chemistry

Autor responsável pela correspondência
Email: lobachev.vl51@yandex.ru
Rússia, Donetsk

V. Lobachev

L. M. Litvinenko Institute of Physical Organic and Coal Chemistry

Email: lobachev.vl51@yandex.ru
Rússia, Donetsk

T. Bezbozhnaya

L. M. Litvinenko Institute of Physical Organic and Coal Chemistry

Email: lobachev.vl51@yandex.ru
ORCID ID: 0000-0002-7905-6546
Rússia, Donetsk

Bibliografia

  1. Wagner G.W., Yang Y.C. // Ind. Eng. Chem. Res. 2002. Vol. 41. N 8. Р. 1925. doi: 10.1021/ie010732f
  2. Zhao S., Xi H., Zuo Y., Wang Q., Wang Z., Yan Z. // J. Hazard. Mater. 2018. Vol. 344. P. 136. doi: 10.1016/j.jhazmat.2017.09.055
  3. Анисимов А.В., Тараканова А.В. // Рос. хим. ж. 2008. T. 52. № 4. C. 32; Anisimov A.V., Tarakanova A.V. // Russ. J. Gen. Chem. 2009. Vol. 79. N 6. P. 1264. https://doi.org/10.1134/S1070363209060437
  4. Rajendran A., Cui T., Fan H., Yang Z., Feng J., Li W. // J. Mater. Chem. (A). 2020. Vol. 8. P. 2246. doi: 10.1039/c9ta12555h
  5. Fernández I., Khiar N. // Chem. Rev. 2003. Vol. 103. N 9. P. 3651. doi: 10.1021/cr990372u
  6. Kupwade R.V. // J. Chem. Rev. 2019. Vol. 1. N 2. P. 99. doi: 10.33945/SAMI/JCR.2019.1.99113
  7. Das R., Chakraborty D. // Tetrahedron Lett. 2010. Vol. 51. N 48. P. 6255. doi: 10.1016/j.tetlet.2010.09.081
  8. Burgess J., Hubbard C.D. // Adv. Inorg. Chem. 2013. Vol. 65. P. 217. doi: 10.1016/b978-0-12-404582-8.00006-7
  9. Davies D.M., Deary M.E., Quill K., Smith R.A. // Chem. Eur. J. 2005. Vol. 11. N 12. P. 3552. doi: 10.1002/chem.200401209
  10. Durrant M.C., Davies D.M., Deary M.E. // Org. Biomol. Chem. 2011. Vol. 9. N 20. P. 7249. doi: 10.1039/c1ob06142a
  11. Лобачев В.Л., Зимцева Г.П., Матвиенко Я.В., Рудаков Е.С.// Теорет. и эксперим. химия. 2007. T. 43. № 1. C. 38; Lobachev V.L., Zimtseva G.P., Matvienko Ya.V., Rudakov E.S. // Theoret. Experim. Chem. 2007. Vol. 43. N 1. P. 44. https://doi.org/10.1007/s11237-007-0004-4
  12. Richardson D.E., Yao H., Frank K.M., Bennett D.A. // J. Am. Chem. Soc. 2000. Vol. 122. N 8. P. 1729. doi: 10.1021/ja9927467
  13. Лобачев В.Л., Дятленко Л.М., Зимцева Г.П. // ТЭХ. 2012. Т. 48. № 3. C. 168; Lobachev V.L., Zimtseva G.P., Dyatlenko L.M. // Theoret. Experim. Chem. 2012. Vol. 48. N 3. P. 182. https://doi.org/10.1007/s11237-012-9259-5
  14. Любимова А.К., Безбожная Т.В., Лобачев В.Л. // Кинетика и катализ. 2021. Т. 62. № 3. С. 296.; Liubymova A.K., Bezbozhnaya T.V., Lobachev V.L. // Kinetics and Catalysis. 2021. Vol. 62. N 3. Р. 342. doi: 10.1134/S002315842103006X
  15. Laus G. // J. Chem. Soc. Perkin Trans. 2. 2001. P. 864. doi: 10.1039/b102066h
  16. Bethell D., Graham A.E., Heer J.P., Markopoulou O., Page P.C.B., Park B.K. // J. Chem. Soc., Perkin Trans. 2. 1993. P. 2161. doi: 10.1039/P29930002161
  17. Gillitt N.D., Domingos J., Bunton C.A. // J. Phys. Org. Chem. 2003. Vol. 16. P. 603. doi: 10.1002/poc.646
  18. Payne G.B., Deming P.H., Williams P.H. // J. Org. Chem. 1961. Vol. 26. N 3. P.659. doi: 10.1021/jo01062a004
  19. Лобачев В.Л., Дятленко Л.М., Зубрицкий М.Ю. // Кинетика и катализ. 2016. Т. 57. № 6. С. 751; Lobachev V.L., Dyatlenko L.M., Zubritskii M.Yu. // Kinetics and Catalysis. 2016. Vol. 57. N 6. P. 742. doi: 10.1134/S0023158416060094
  20. Вейганд-Хильгетаг. Методы эксперимента в органической химии. М.: Химия, 1969. 944 c.; Weygand-Hilgetag. Organisch-chemische experimentierkunst. Leipzig: Johan Ambrosius Barth. Verlag, 1964.
  21. Hansson A. // Acta Chem. Scand. 1961. Vol. 15. N 4. P. 934. doi: 10.3891/acta.chem.scand.15-0934
  22. Вайсбергер А., Проскауэр Э., Риддик Дж., Туис Э. Органические растворители. М.: Инлит, 1958. 519 с; Weisberger A., Рroskauer E., Riddick J., Tuis E. Organic solvents. New York: Interscience Publ., Inc., 1955. 552 p.
  23. Рудаков Е.С. Реакции алканов с окислителями, металлокомплексами и радикалами в растворах. Киев: Наукова думка, 1985. 247 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Kinetic curves of Et2S oxidation by sodium peroxoborate in H2O-MeCN solutions at pH 8.48 (1), 11.05 (2). [PB] = 0.002 M., [CH3CN] = 1 vol%, N0S/Vg = 1.08-10-4 M., 25°C

Baixar (101KB)
3. Scheme 1

Baixar (43KB)
4. Fig. 2. pH-dependences of initial oxidation rates of Et2S at 25°C, N0S 8.4-10-7 mol, λ 2.12, [MeCN] = 0.19 M. (1 vol%). 1 - reactions with sodium peroxoborate in aqueous solutions ([PB] = 0.002 M.) [19]; 2 - in the H2O-MeCN-peroxoborate system ([PB] = 0.002 M.); 3 - in the H2O2-MeCN-N2O system [14]

Baixar (77KB)
5. Scheme 2

Baixar (66KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies