Morphology and luminescent properties of nanocrystalline NaGdF4 phosphors doped with neodymium(III) ions

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Nanocrystalline phosphors NaGd1- x Nd x F4 ( x = 0-1) were synthesized by hydrothermal synthesis for the first time. All the synthesized compounds have hexagonal β-NaYF4 crystalline phase. Neodymium(III) ions isomorphically replace gadolinium ions. NaGd0.96Nd0.04F4 compound has the largest photoemission intensity in NIR range upon 808 nm excitation; further doping with Nd3+ results in concentration quenching.

Авторлар туралы

A. Betina

St. Petersburg State University

T. Bulatova

St. Petersburg State University

V. Nosov

St. Petersburg State University

I. Kolesnikov

St. Petersburg State University

N. Bogachev

St. Petersburg State University

M. Skripkin

St. Petersburg State University

A. Mereshchenko

St. Petersburg State University

Email: a.mereshchenko@spbu.ru

Әдебиет тізімі

  1. Maciejewska K., Marciniak L. // Sci. Rep. 2023. Vol. 13. N 1. P. 472. doi: 10.1038/s41598-022-27339-9
  2. McMillen C., Comer S., Fulle K., Sanjeewa L., Kolis J. // Cryst. Eng. Mater. 2015. Vol 71. N 6. P. 768. doi: 10.1107/S2052520615017916
  3. Zheng B., Fan J., Chen B., Qin X., Wang J., Wang F., Deng R., Liu X. // Chem. Rev. 2022. Vol. 122. N 6. P. 5519. doi: 10.1021/acs.chemrev.1c00644
  4. He X., Wu Y., Jiang Y., Liu J., Xiang X., Wen C., Li X., Wang F. // Chin. J. Lumin. 2022. Vol. 43. N 3. P. 350. doi: 10.37188/CJL.20210391
  5. Rosal B., Perez-Delgado A., Misiak M., Bednarkiewicz A., Vanetsev A., Orlovskii Y., Jovanovic D., Dramicanin M., Rocha U., Kumar U., Jacinto C., Navarro E., Rodriguez E., Pedroni M., Speghini A., Hirata G., Martin I., Jaque D. // J. App. Phys. 2015. Vol. 118. N 14. P. 143104. doi: 10.1063/1.4932669
  6. Kavand A., Serra C.A., Blanck C., Lenertz M., Anton N., Vandamme T. F., Chan-Seng D. // ACS Appl. Nano Mater. 2021. Vol. 4. P. 5319. doi: 10.1021/acsanm.1c00664
  7. Zhang X., Zhao Z., Zhang X. Cordes D., Weeks B., Qiu B., Madanan K., Sardar D., Chaudhuri J. // Nano Res. 2014. Vol. 8. N 2. P. 636. doi: 10.1007/s12274-014-0548-2
  8. Joubert M.F., Linarès C., Jacquier B., Cassanho A., Jenssen H.P. // J. Lumin. 1992. Vol. 51. P. 175. doi: 10.1016/0022-2313(92)90052-B
  9. Agbo P., Kanady J.S., Abergel R.J. // Front Chem. 2020 Vol. 8. doi: 10.3389/fchem.2020.579942
  10. Dong C., Pichaandi J., Regier T., van Veggel F.C.J.M. // J. Phys. Chem. (C). 2011. Vol. 115 N 32. P. 15950. doi: 10.1021/jp206441u
  11. Xue X., Suzuki T., Tiwari R.N., Yoshimura M., Ohishi Y. // Japan. J. Appl. Phys. 2014. Vol. 53. P. 075001. doi: 10.7567/JJAP.53.075001
  12. Li X., You F., Peng H., Huang S. // J. Nanosci. Nanotechnol. 2016. Vol. 16. P. 3940. doi: 10.1166/jnn.2016.11818
  13. Zhang W., Zang Y., Lu Y., Han J., Xiong Q., Xiong J. // Nanomaterials. 2022. Vol. 12. P. 728. doi: 10.3390/nano12050728
  14. Vidyakina A.A., Kolesnikov I.E., Bogachev N.A., Skripkin M.Y., Tumkin I.I., Lähderanta E., Mereshchenko A.S. // Materials. 2020. Vol. 13. P. 3397. doi: 10.3390/ma13153397
  15. Видякина А.А., Жеглов Д.А., Олейник А.В., Фрейнкман О.В., Колесников И.Е., Богачев Н.А., Скрипкин М.Ю., Мерещенко А.С. // ЖОХ. 2021. Т. 91. N. 5. C. 763. doi: 10.31857/S0044460X21050140
  16. Vidyakina A.A., Zheglov D.A., Oleinik A.V., Freinkman O.V., Kolesnikov I.E., Bogachev N.A., Skripkin M.Y., Mereshchenko A.S. // Russ. J. Gen. Chem. 2021. Vol. 91. P. 844. doi: 10.1134/S1070363221050145
  17. Kolesnikov I.E., Vidyakina A.A., Vasileva M.S., Nosov V.G., Bogachev N.A., Sosnovsky V.B., Skripkin M.Y., Tumkin I.I., Lahderanta E., Mereshchenko A.S. // New J. Chem. 2021. Vol. 45. P. 10599. doi: 10.1039/d1nj02193a
  18. Wang F., Liu X. // Acc. Chem. Res. 2014. Vol. 47. N 4. P. 1378. doi: 10.1021/ar5000067
  19. Shannon R.D. // Acta Crystallogr. (A). 1976. A32. P. 751. doi: 10.1107/S0567739476001551
  20. Denton A.R., Ashcroft N.W. // Phys. Rev. (A). 1991. Vol. 43. P. 3161. doi: 10.1103/PhysRevA.43.3161
  21. Bogachev N.A., Betina A.A., Bulatova T.S., Nosov V.G., Kolesnik S.S., Tumkin I.I., Ryazantsev M.N., Skripkin M.Y., Mereshchenko A.S. // Nanomaterials. 2022. Vol. 12. N 17. P. 2972. doi: 10.3390/nano12172972
  22. Qiao S., Zhang Y., Shi X., Jiang B., Zhang L., Cheng X., Li L., Wang J., Gui L. // Chinese Opt. Lett. 2015. Vol. 13. N 5. P. 051602. doi: 10.3788/COL201513.051602
  23. Li J., Wu Y., Pan Y., Liu W., Huang L., Guo J. // Opt. Mater. 2008. Vol. 31. N 1. P. 6. doi: 10.1016/j.optmat.2007.12.014
  24. Krämer K.W., Biner D., Frei G., Güdel H.U., Hehlen M.P., Lüthi S.R. // Chem. Mater. 2004. Vol. 16. N 7. P. 1244. doi: 10.1021/cm031124o
  25. Blasse G. // Philips Res. Rep. 1969. Vol. 24. N 2. P. 131. doi: 10.1016/0375-9601(68)90486-6
  26. Li D., Xu B., Huang Z., Jin X., Zhang Z., Zhang T., Wang D., Liu X., Li Q. // Nanomaterials. 2022. Vol. 12. N 20. doi: 10.3390/nano12203641
  27. Dexter D.L. // J. Chem. Phys. 1953. Vol. 21. N 5. P. 836. doi: 10.1063/1.1699044
  28. van Uitert I.G. // J. Electrochem. Soc. 1967. Vol. 114. N 10. P. 1048. doi: 10.1149/1.2424184
  29. Ozawa L., Jaffe P.M. // J. Electrochem. Soc. 1971. Vol. 118. N 10. P. 1978. doi: 10.1149/1.2407810
  30. Li H., Zhao R., Jia Y., Sun W., Fu J., Jiang L., Zhang S., Pang R., Li C. // ACS Appl. Mater. Interfaces. 2014. Vol. 6. N 5. P. 3163. doi: 10.1021/am4041493

© Russian Academy of Sciences, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>