Морфология и люминесцентные свойства нанокристаллических люминофоров NaGdF4, легированных ионами неодима(III)

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Методом гидротермального синтеза впервые синтезированы нанокристаллические люминофоры состава NaGd1- x Nd x F4 ( x = 0-1). Полученные соединения кристаллизуются в гексагональной сингонии, структурный тип - β-NaYF4. Ионы неодима(III) изоморфно замещают ионы гадолиния. Максимальная интенсивность люминесценции в ближней ИК области при возбуждении на длине волны 808 нм соответствует соединению состава NaGd0.96Nd0.04F4. При увеличении содержания ионов неодима происходит концентрационное тушение.

Об авторах

А. А Бетина

Санкт-Петербургский государственный университет

Т. С Булатова

Санкт-Петербургский государственный университет

В. Г Носов

Санкт-Петербургский государственный университет

И. Е Колесников

Санкт-Петербургский государственный университет

Н. А Богачев

Санкт-Петербургский государственный университет

М. Ю Скрипкин

Санкт-Петербургский государственный университет

А. С Мерещенко

Санкт-Петербургский государственный университет

Email: a.mereshchenko@spbu.ru

Список литературы

  1. Maciejewska K., Marciniak L. // Sci. Rep. 2023. Vol. 13. N 1. P. 472. doi: 10.1038/s41598-022-27339-9
  2. McMillen C., Comer S., Fulle K., Sanjeewa L., Kolis J. // Cryst. Eng. Mater. 2015. Vol 71. N 6. P. 768. doi: 10.1107/S2052520615017916
  3. Zheng B., Fan J., Chen B., Qin X., Wang J., Wang F., Deng R., Liu X. // Chem. Rev. 2022. Vol. 122. N 6. P. 5519. doi: 10.1021/acs.chemrev.1c00644
  4. He X., Wu Y., Jiang Y., Liu J., Xiang X., Wen C., Li X., Wang F. // Chin. J. Lumin. 2022. Vol. 43. N 3. P. 350. doi: 10.37188/CJL.20210391
  5. Rosal B., Perez-Delgado A., Misiak M., Bednarkiewicz A., Vanetsev A., Orlovskii Y., Jovanovic D., Dramicanin M., Rocha U., Kumar U., Jacinto C., Navarro E., Rodriguez E., Pedroni M., Speghini A., Hirata G., Martin I., Jaque D. // J. App. Phys. 2015. Vol. 118. N 14. P. 143104. doi: 10.1063/1.4932669
  6. Kavand A., Serra C.A., Blanck C., Lenertz M., Anton N., Vandamme T. F., Chan-Seng D. // ACS Appl. Nano Mater. 2021. Vol. 4. P. 5319. doi: 10.1021/acsanm.1c00664
  7. Zhang X., Zhao Z., Zhang X. Cordes D., Weeks B., Qiu B., Madanan K., Sardar D., Chaudhuri J. // Nano Res. 2014. Vol. 8. N 2. P. 636. doi: 10.1007/s12274-014-0548-2
  8. Joubert M.F., Linarès C., Jacquier B., Cassanho A., Jenssen H.P. // J. Lumin. 1992. Vol. 51. P. 175. doi: 10.1016/0022-2313(92)90052-B
  9. Agbo P., Kanady J.S., Abergel R.J. // Front Chem. 2020 Vol. 8. doi: 10.3389/fchem.2020.579942
  10. Dong C., Pichaandi J., Regier T., van Veggel F.C.J.M. // J. Phys. Chem. (C). 2011. Vol. 115 N 32. P. 15950. doi: 10.1021/jp206441u
  11. Xue X., Suzuki T., Tiwari R.N., Yoshimura M., Ohishi Y. // Japan. J. Appl. Phys. 2014. Vol. 53. P. 075001. doi: 10.7567/JJAP.53.075001
  12. Li X., You F., Peng H., Huang S. // J. Nanosci. Nanotechnol. 2016. Vol. 16. P. 3940. doi: 10.1166/jnn.2016.11818
  13. Zhang W., Zang Y., Lu Y., Han J., Xiong Q., Xiong J. // Nanomaterials. 2022. Vol. 12. P. 728. doi: 10.3390/nano12050728
  14. Vidyakina A.A., Kolesnikov I.E., Bogachev N.A., Skripkin M.Y., Tumkin I.I., Lähderanta E., Mereshchenko A.S. // Materials. 2020. Vol. 13. P. 3397. doi: 10.3390/ma13153397
  15. Видякина А.А., Жеглов Д.А., Олейник А.В., Фрейнкман О.В., Колесников И.Е., Богачев Н.А., Скрипкин М.Ю., Мерещенко А.С. // ЖОХ. 2021. Т. 91. N. 5. C. 763. doi: 10.31857/S0044460X21050140
  16. Vidyakina A.A., Zheglov D.A., Oleinik A.V., Freinkman O.V., Kolesnikov I.E., Bogachev N.A., Skripkin M.Y., Mereshchenko A.S. // Russ. J. Gen. Chem. 2021. Vol. 91. P. 844. doi: 10.1134/S1070363221050145
  17. Kolesnikov I.E., Vidyakina A.A., Vasileva M.S., Nosov V.G., Bogachev N.A., Sosnovsky V.B., Skripkin M.Y., Tumkin I.I., Lahderanta E., Mereshchenko A.S. // New J. Chem. 2021. Vol. 45. P. 10599. doi: 10.1039/d1nj02193a
  18. Wang F., Liu X. // Acc. Chem. Res. 2014. Vol. 47. N 4. P. 1378. doi: 10.1021/ar5000067
  19. Shannon R.D. // Acta Crystallogr. (A). 1976. A32. P. 751. doi: 10.1107/S0567739476001551
  20. Denton A.R., Ashcroft N.W. // Phys. Rev. (A). 1991. Vol. 43. P. 3161. doi: 10.1103/PhysRevA.43.3161
  21. Bogachev N.A., Betina A.A., Bulatova T.S., Nosov V.G., Kolesnik S.S., Tumkin I.I., Ryazantsev M.N., Skripkin M.Y., Mereshchenko A.S. // Nanomaterials. 2022. Vol. 12. N 17. P. 2972. doi: 10.3390/nano12172972
  22. Qiao S., Zhang Y., Shi X., Jiang B., Zhang L., Cheng X., Li L., Wang J., Gui L. // Chinese Opt. Lett. 2015. Vol. 13. N 5. P. 051602. doi: 10.3788/COL201513.051602
  23. Li J., Wu Y., Pan Y., Liu W., Huang L., Guo J. // Opt. Mater. 2008. Vol. 31. N 1. P. 6. doi: 10.1016/j.optmat.2007.12.014
  24. Krämer K.W., Biner D., Frei G., Güdel H.U., Hehlen M.P., Lüthi S.R. // Chem. Mater. 2004. Vol. 16. N 7. P. 1244. doi: 10.1021/cm031124o
  25. Blasse G. // Philips Res. Rep. 1969. Vol. 24. N 2. P. 131. doi: 10.1016/0375-9601(68)90486-6
  26. Li D., Xu B., Huang Z., Jin X., Zhang Z., Zhang T., Wang D., Liu X., Li Q. // Nanomaterials. 2022. Vol. 12. N 20. doi: 10.3390/nano12203641
  27. Dexter D.L. // J. Chem. Phys. 1953. Vol. 21. N 5. P. 836. doi: 10.1063/1.1699044
  28. van Uitert I.G. // J. Electrochem. Soc. 1967. Vol. 114. N 10. P. 1048. doi: 10.1149/1.2424184
  29. Ozawa L., Jaffe P.M. // J. Electrochem. Soc. 1971. Vol. 118. N 10. P. 1978. doi: 10.1149/1.2407810
  30. Li H., Zhao R., Jia Y., Sun W., Fu J., Jiang L., Zhang S., Pang R., Li C. // ACS Appl. Mater. Interfaces. 2014. Vol. 6. N 5. P. 3163. doi: 10.1021/am4041493

© Российская академия наук, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах