Surface Morphology of Various Matrixes with Zirconium Oxide Coatings Synthetized by Alternating Pulsing of Zirconium(IV) tert-Butoxide and Water Vapors Treatment of the Surface

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Zirconium oxide coatings of various thicknesses were synthesized on the surface of plates of monocrystalline silicon and borosilicate glass by alternating pulsing of zirconium(IV) tert-butoxide and water vapors treatment. The effect of the matrix type and the coating thickness on surface morphology of the samples was investigated using atomic force microscopy. The concentrations of zirconium in the synthesis products were determined by X-ray spectral microanalysis and the growth constant of the zirconium oxide film on silicon was evaluated. Assumptions are made about the influence of the type of the matrix on the structure of the surface of the zirconium oxide layer.

Full Text

Restricted Access

About the authors

A. V. Moskalev

St. Petersburg State Institute of Technology (Technical University)

Author for correspondence.
Email: alexmosk2015@gmail.com
Russian Federation, St. Petersburg

V. V. Antipov

St. Petersburg State Institute of Technology (Technical University)

Email: alexmosk2015@gmail.com
Russian Federation, St. Petersburg

A. S. Tsipanova

St. Petersburg State Institute of Technology (Technical University)

Email: alexmosk2015@gmail.com
ORCID iD: 0000-0002-3510-5051
Russian Federation, St. Petersburg

A. A. Malygin

St. Petersburg State Institute of Technology (Technical University)

Email: alexmosk2015@gmail.com
ORCID iD: 0000-0002-1818-7761
Russian Federation, St. Petersburg

References

  1. Федоров П.П., Яроцкая Е.Г. // КСиМГ. 2021. Т. 23. Вып. 2. С. 169.
  2. Balakrishnan G., Kuppusami P., Sastikumar D., Song J.I. // Nanoscale Res. Lett. 2013. Vol .8. N 1. P. 1. doi: 10.1186/1556-276X-8-82
  3. Kukli K., Ritala M., Leskelä M. // Chem. Vapor Depos. 2000. Vol. 6. N 6. P. 297. doi: 10.1002/1521-3862(200011)6:6<297::AID-CVDE297>3.0.CO;2-8
  4. Kukli K., Kemell M., Castán H., Dueñas S., Seemen H., Rähn M., Link J., Stern R., Heikkilä M.J., Ritala M. // ECS J. Solid State Sci. Technol. 2018. Vol. 7. N 5. P. 287. doi: 10.1149/2.0021806jss
  5. James C., Xu R., Jursich G., Takoudis C.G. // J. Undergrad. Res. Un. Illinois Chicago. 2012. Vol. 5. N 1. P. 1. doi: 10.5210/jur.v5i1.7505
  6. Малыгин А.А., Антипов В.В., Кочеткова А.С., Буймистрюк Г.Я. // ЖПХ. 2018. Т. 91. Вып. 1. С. 17; Malygin A.A., Antipov V.V., Kochetkova A.S., Buimistryuk G.Y. // Russ. J. Appl. Chem. 2018. Vol. 91. N 1. P. 12. doi: 10.1134/S1070427218010032
  7. Соснов Е.А., Малков А.А., Малыгин А.А. // ЖПХ. 2021. Т. 94. Вып. 8. C. 967; Sosnov E.A., Malkov A.A., Malygin A.A. // Russ. J. Appl. Chem. 2021. Vol. 94. N 8. P. 1022. doi: 10.1134/S1070427221080024
  8. Малыгин А.А. // Рос. нанотехнол. 2007. Т. 2. Вып. 3–4. С. 87.
  9. Oviroh P.O., Akbarzadeh R., Pan D., Coetzee R.A.M., Jen T.C. // Sci. Technol. Adv. Mater. 2019. Vol. 20. N 1. P. 465. doi: 10.1080/14686996.2019.1599694
  10. Chen Z., Prud'homme N., Wang B., Ribot P., Ji V. // Surf. Coat. Technol. 2013. Vol. 218. P. 7.
  11. Torres-Huerta A.M., Dominguez-Crespo M.A., Onofre-Bustamante E., Flores-Vela A. // J. Mater. Sci. 2011. Vol. 47 N 5. P. 2300.
  12. Jones A.C., Aspinall H.C., Chalker P.R., Potter R.J., Manning T.D., Loo Y.F., O’Kane R., Gaskell J.M., Smith L.M. // Chem. Vapor Depos., 2006. Vol. 12. N 2–3. P. 83. doi: 10.1002/cvde.200500023
  13. Nakajima A., Kidera T., Ishii H., Yokoyama S. // Appl. Phys. Lett. 2002. Vol. 81. N 15. P. 2824. doi: 10.1063/1.1510584
  14. Matero R., Ritala M., Leskelä M., Jones A.C., Williams P.A., Bickley J.F., Steiner A., Leedham T.J., Davies H.O. // J. Non-Cryst. Solids. 2002. Vol. 303. N 1. P. 24. doi: 10.1016/S0022-3093(02)00959-6
  15. Cameron M.A., George S.M. // Thin Solid Films. 1999. Vol. 348. N 1–2. P. 90. doi: 10.1016/S0040-6090(99)00022-X
  16. Burleson D.J., Roberts J.T., Gladfelter W.L., Campbell S.A., Smith R.C. // Chem. Mater. 2002. Vol. 14. N 3. P. 1269. doi: 10.1021/cm0107629
  17. Hausmann D.M., Kim E., Becker J., Gordon R.J. // Chem. Mater. 2002. Vol. 14. N 10. P. 4350. doi: 10.1021/cm020357x
  18. Kim Y., Koo J., Han J., Choi S., Jeon H., Park C.G. // J. Appl. Phys. 2002. Vol. 92. N 9. P. 5443. doi: 10.1063/1.1513196
  19. Kröger-Laukkanen M., Peussa M., Leskelä M., Niinistö L. // Appl. Surf. Sci. 2001. Vol. 183. N 3–4. P. 290. doi: 10.1016/S0169-4332(01)00573-6
  20. Niinistö J., Putkonen M., Niinistö L. // J. Appl. Phys. 2004. Vol. 95. N 1. P. 84. doi: 10.1063/1.1630696
  21. Copel M., Gribelyuk M., Gusev E. // Appl. Phys. Lett. 2000. Vol. 76. N 4. P. 436. doi: 10.1063/1.12577
  22. Kukli K., Ritala M., Leskelä M. // J. Appl. Phys. 2002. Vol. 92. N 4. P. 1833. doi: 10.1063/1.1493657
  23. Kytökivi A., Lakomaa E.L., Root A., Österholm H., Jacobs J.P., Brongersma H.H. // Langmuir. 1997. Vol. 13. N 10. P. 2717. doi: 10.1021/la961085d
  24. Kytökivi A., Lakomaa E.L., Root A. // Langmuir. 1996. Vol. 12. N 18. P. 4395. doi: 10.1021/la960198u
  25. Bradley D.C., Wardlaw W. // J. Chem. Soc. 1951. P. 280.
  26. Merck Database. https://www.sigmaaldrich.com/AL/en/product/aldrich/560030
  27. Антипов В.В., Беляев А.П., Малыгин А.А., Рубец В.П., Соснов Е.А. // ЖПХ. 2008. Т. 81. Вып. 12. С. 1937; Antipov V.V., Belyaev A.P., Malygin A.A., Rubets V.P., Sosnov E.A. // Russ. J. Appl. Chem. Vol. 81. N 12. P. 2051. doi: 10.1134/S107042720812001X
  28. Химическая энциклопедия / Под ред. И.Л. Кнунянца. М.: Советская энциклопедия, 1990. Т. 2. С. 761.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependence of zirconium content (a) and thickness (b) of zirconium-oxide film on silicon surface on the number of processing cycles

Download (142KB)
3. Fig. 2. AFM reconstruction of the surface of initial silicon (a) and borosilicate glass (b) substrates in topography (left) and phase contrast (right) modes

Download (1MB)
4. Fig. 3. AFM surface reconstruction of silicon (a) and borosilicate glass (b) samples after 10 processing cycles in topography (left) and phase contrast (right) modes

Download (1MB)
5. Fig. 4. AFM surface reconstruction of silicon (a) and borosilicate glass (b) matrices after 130 processing cycles in topography (left) and phase contrast (right) mode

Download (1MB)
6. Fig. 5. AFM reconstruction of the surface of borosilicate glass matrices after 260 cycles of processing in topography (a) and phase contrast (b) modes

Download (682KB)
7. Fig. 6. AFM reconstruction of the surface of silicon (a) and borosilicate glass (b) matrices after 390 processing cycles in topography (left) and phase contrast (right) modes. Scanning area - 0.5×0.5 μm2

Download (829KB)
8. Fig. 7. AFM reconstruction of the borosilicate glass matrix surface after 1000 processing cycles in topography (a) and phase contrast mode (b)

Download (543KB)
9. Fig. 8. AFM reconstruction of the initial surface (a) and lateral surface of sapphire optical fiber after 390 processing cycles in topography (left) and phase contrast (right) modes

Download (1MB)
10. Fig. 9. Schematic diagram of the flow-vacuum-type molecular layering unit

Download (176KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies