Synthesis of 5,5′-Dinitro- and 5,5′-Diaminobis(cyclopenta[b]indoles) Bound at N4,N4′ Atoms with a Dioxoalkane Spacer

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Upon condensation of 2 equiv. of 3R*,3aR*,8bS*-3-iodo-7-methyl-1,2,3,3а,4,8b-hexahydrocyclopenta[b]indole with 1 equiv. of glutaric or decanedicarboxylic acid dichloranhydride [N4,N4′-di-(3R*,3aR*,8bS*,3′R*,3a′R*,8b′S*)- and N4,N4′-di-(3aR*,3aR*,8bS*,3′S*,3a′S*,8b′R*)-3-iodo-7-methyl-1,2,3,3а,4,8b-hexahydrocyclopenta[b]indolyl]alkanediamides were synthesized. Their didehydrohalogenation to 3aR*,8bR*,3a′R*,8b′R*- and 3aS*,8bS*,3a′R*,8b′R*-1,3a,4,8b-tetrahydroanalogues was carried out by boiling these diiodides in piperidine. The presence of rotamerism in the products of dehydrohalogenation was shown, which is manifested by doubling the signals in the NMR spectra in different ratios. Nitration with trifluoroacetyl nitrate in CH2Cl2 yielded their 5,5′-dinitro analogs, which, when reacted with freshly prepared Fe(OH)2, along with 5,5′-diamino derivatives, also formed 5-amino-5′-nitro-substituted products of incomplete reduction. When a nitro group or an amino group appears at the C5 and C5′ carbon atoms of the cyclopenta[b]indole fragments, the doubling of the signals in the NMR spectra disappears. The interaction of a 5,5′-diamino derivative (n = 8) with decanedicarboxylic acid dichloride yielded a compound with 30 atoms in the macrocyclic ring.

Full Text

Restricted Access

About the authors

R. R. Gataullin

Ufa Institute of Chemistry of the Ufa Scientific Center of the Russian Academy of Sciences

Author for correspondence.
Email: gataullin@anrb.ru
ORCID iD: 0000-0003-3269-2729
Russian Federation, Ufa

Д. А. Складчиков

Ufa Institute of Chemistry of the Ufa Scientific Center of the Russian Academy of Sciences

Email: gataullin@anrb.ru
Russian Federation, Ufa

References

  1. Horiuchi T., Miura H., Uchida S. // Chem. Commun. 2003. N 24. P. 3036. doi: 10.1039/b307819a
  2. Dentani T., Kubota Y., Funabiki K., Jin J., Yoshida T., Minoura H., Miura H., Matsui M. // New J. Chem. 2009. Vol. 33. N 1. P. 93. doi: 10.1039/B808959K
  3. Higashijima S., Miura H., Fujita T., Kubota Y., Funabiki K., Yoshida T., Matsui M. // Tetrahedron. 2011. Vol. 67. N 34. P. 6289. doi: 10.1016/j.tet.2011.06.016
  4. Akhtaruzzaman Md., Seya Y., Asao N., Islam A., Kwon E., El-Shafei A., Hanc L., Yamamoto Y. // J. Mater. Chem. 2012. Vol. 22. N 21. P. 10771. doi: 10.1039/C2JM30978E
  5. Qu S., Qin C., Islam A., Hua J., Chen H., Tian H., Han L. // Chem. Asian J. 2012. Vol. 7. N 12. P. 2895. doi: 10.1002/asia.201200648
  6. Springer J.P., Clardy J., Wells J.M., Cole R.J., Kirksey J.W. // Tetrahedron Lett. 1975. Vol 16. N 30. P. 2531. doi: 10.1016/S0040-4039(00)75170-7
  7. Clark S.J., Myatt J., Wilson C., Roberts L., Walshe N. // Chem. Commun. 2003. N 13. P. 1546. doi: 10.1039/B302105J
  8. Fehr Th., Acklin W. // Helv. Chim. Acta. 1966. Vol. 49. N 6. P. 1907. doi: 10.1002/hlca.19660490626
  9. Nozawa K., Yuyama M., Nakajima S., Kawai K. // J. Chem. Soc. Perkin Trans I. 1988. N 8. P. 2155. doi: 10.1039/P19880002155
  10. Gallagher R.T., Finer J., Clardy J., Leutwiler A., Weibel F., Acklin W., Arigoni D. // Tetrahedron Lett. 1980. Vol. 21. N 3. P. 235. doi: 10.1016/S0040-4039(00)71177
  11. Smith A.B., Kingery-Wood J., Leenay T.L., Nolen E.G., Sunazuka T. // J. Am. Chem. Soc. 1992. Vol. 114. N 4. P. 1438. doi: 10.1021/ja00030a046
  12. Третьякова Е.В., Флехтер О.Б., Галин Ф.З., Спирихин Л.В., Толстиков Г.А. // ХПС. 2002. № 3. C. 206; Tret’yakova E.V., Flekhter O.B., Galin F.Z., Spirikhin L.V., Tolstikov G.A. // Chem. Natural Compd. 2002. Vol. 38. N 3. P. 246. doi: 10.1023/A:1020427926979
  13. Singh S.B., Ondeyka J.G., Jayasuriya H., Zink D.L., Ha S.N., Dahl-Roshak A., Greene J., Kim J.A., Smith M.M., Shoop W., Tkacz J.S. // J. Nat. Prod. 2004. Vol. 67. N 9. P. 1496. doi: 10.1021/np0498455
  14. Roll D.M., Barbieri L.R., Bigelis R., McDonald L.A., Arias D.A., Chang L.P., Singh M.P., Luckman S.W., Berrodin T.J., Yudt M.R. // J. Nat. Prod. 2009. Vol. 72. N 11. P. 1944. doi: 10.1021/np9004882
  15. Лихачева Н.А., Корлюков А.А., Гатауллин P.P. // ЖОрХ. 2009. Т. 45. № 3. C. 406; Likhacheva N.A., Korlyukov A.A., Gataullin R.R. // Russ. J. Org. Chem. 2009. Vol. 45. N 3. 394. doi: 10.1134/S1070428009030075
  16. Гатауллин Р.Р. // Изв. вузов. Сер. хим. и хим. технол. 2023. Т. 66. № 2. С. 6. doi: 10.6060/ivkkt.20236602.6720
  17. Гатауллин Р.Р. // ЖОрХ. 2009. Т. 45. № 3. С. 335; Gataullin R.R. // Russ. J. Org. Chem. 2009. Vol. 45. N 3. P. 321. doi: 10.1134/S1070428009030014
  18. Гатауллин Р.Р. // ЖОрХ. 2013. Т. 49. № 2. С. 165; Gataullin R.R. // Russ. J. Org. Chem. 2013. Vol. 49. N 2. P. 151. doi: 10.1134/S1070428013020012
  19. Гатауллин Р.Р. // ЖОрХ. 2016. Т. 52. № 9. С. 1239; Gataullin R.R. // Russ. J. Org. Chem. 2016. Vol. 52. N 9. P. 1227. doi: 10.1134/S1070428016090013
  20. Haak E. // Synlett. 2019. Vol. 30. N 3. P. 245. doi: 10.1055/s-0037-1610336
  21. Sturino C.F., O’Neill G., Lachance M., Boyd M., Berthelette C., Labelle M., Li L., Roy В., Scheigetz J., Tsou N., Aubin Y., Bateman K.P., Chauret N., Day S.H., Levesque J.F., Seto C., Silva J.H., Trimble L.A., Carriere M.C., Denis D., Greig G., Kargman S., Lamontagne S., Mathieu M.C., Sawyer N., Slipetz D., Abraham W.M., Jones Т., McAuliffe M., Piechuta H., Nicoll-Griffith D.A., Wang Z., Zamboni R., Young R.N., Metters K.M. // J. Med. Chem. 2007. Vol. 50. N 4. P. 794. doi: 10.1021/jm0603668
  22. Ratni H., Blum-Kaelin D., Dehmlow H., Hartman P., Jablonski P., Masciadri R., Maugeais C., Patiny-Adam A., Panday N., Wright M. // Bioorg. Med. Chem. Lett. 2009. Vol. 19. N 6. P. 1654. doi: 10.1016/j.bmcl.2009.01.109
  23. Gudmundsson K.S., Sebahar P.R., Richardson L.D.’A., Catalano J.G., Boggs S.D., Spaltenstein A., Sethna P.B., Brown K.W., Harvey R., Romines K.R. // Bioorg. Med. Chem. Lett. 2009. Vol. 19. N 13. P. 3489. doi: 10.1016/j.bmcl.2009.05.003
  24. Han B., Xiao Y.-C., Yao Y., Chen Y.-C. // Angew. Chem. Int. Ed. 2010. Vol. 49. N 52. P. 10189. doi: 10.1002/anie.201005296
  25. Lanter J.C., Fiordeliso J.J., Alford V.C., Zhang X., Wells K.M., Russell R.K., Allan F., Lai M.-T., Linton O., Lundeen S., Sui Z. // Bioorg. Med. Chem. Lett. 2007. Vol. 17. N 9. P. 2545. doi: 10.1016/j.bmcl.2007.02.014
  26. Li L., Beaulieu C., Carriere M.-C., Denis D., Greig G., Guay D., O’Neill G., Zamboni R., Wang Z. // Bioorg. Med. Chem. Lett. 2010. Vol. 20. N 24. P. 7462. doi: 10.1016/j.bmcl.2010.10.018
  27. Mittapalli G.K., Jackson A., Zhao F., Lee H., Chow S., McKelvy J., Wong-Staal F., Macdonald J.E. // Bioorg. Med. Chem. Lett. 2011. Vol. 21. N 22. P. 6852. doi: 10.1016/j.bmcl.2011.09.019
  28. Campos K.R., Journet M., Lee S., Grabowski E.J.J., Tillyer R.D. // J. Org. Chem. 2005. Vol. 70. No 1. P. 268. doi: 10.1021/jo048305+
  29. Jiang Q., Yang T., Li Q., Liang G.-M., Liu Y., He C.-Y., Chu W.-D., Liu Q.-Z. // Org. Lett. 2023. Vol. 25. N 18. P. 3184. doi: 10.1021/acs.orglett.3c00192
  30. Abozeid M.A., Sairenji S., Takizawa S., Fujita M., Sasai H. // Chem. Commun. 2017. Vol. 53. N 51. P. 6887. doi: 10.1039/c7cc03199h
  31. Schiffner A., Machotta A.B., Oestreich M.A. // Synlett. 2008. N 15. P. 2271. doi: 10.1055/s-2008-1078271
  32. Vivekanand T., Satpathi B., Bankara S.K., Ramasastry S.S.V. // RSC Adv. 2018. Vol. 8. N 33. P. 18576. doi: 10.1039/C8RA03480J
  33. Kandukuri S.R., Jiao L.-Y., Machotta A.B., Oestreich M. // Adv. Synth. Catal. 2014. Vol. 356. N 7. P. 1597. doi: 10.1002/adsc.201301108
  34. Kotha S., Gunta R. // J. Org. Chem. 2017. Vol. 82. N 16. P. 8527. doi: 10.1021/acs.joc.7b01299
  35. Гатауллин Р.Р., Лихачева Н.А., Супоницкий К.Ю., Абдрахманов И.Б. // ЖОрХ. 2007. Т. 43. № 9. С. 1316; Gataullin R.R., Likhacheva N.A., Suponitskii K.Yu., Abdrakhmanov I.B. // Russ. J. Org. Chem. 2007. Vol. 43. N 9. P. 1310. doi: 10.1134/S1070428007090096
  36. Складчиков Д.А., Фатыхов А.А., Гатауллин Р.Р. // ЖОрХ. 2014. Т. 50. № 1. С. 55; Skladchikov D.A., Fatykhov A.A., Gataullin R.R. // Russ. J. Org. Chem. 2014. Vol. 50. N 1. P. 48. doi: 10.1134/s1070428014010096
  37. Складчиков Д.А., Супоницкий К.Ю., Абдрахманов И.Б., Гатауллин Р.Р. // ЖОрХ. 2012. Т. 48. № 7. С. 962; Skladchikov D.A., Suponitskii K.Yu., Abdrakhmanov I.B., Gataullin R.R. // Russ. J. Org. Chem. 2012. Vol. 48. N 7. P. 957. doi: 10.1134/S1070428012070123
  38. Складчиков Д.А., Буранбаева Р.С., Фатыхов А.А., Иванов С.П., Гатуллин Р.Р. // ЖОрХ. 2012. Т. 48. № 12. С. 1579; Skladchikov D.A., Buranbaeva R.S., Fatykhov A.A., Ivanov S.P., Gataullin R.R. // Russ. J. Org. Chem. 2012. Vol. 48. N 12. P. 1550. doi: 10.1134/S1070428012120093
  39. Гатауллин Р.Р., Складчиков Д.А., Фатыхов А.А. // ЖОрХ. 2013. Т. 49. № 2. С. 280; Gataullin R.R., Skladchikov D.A., Fatykhov A.A. // Russ. J. Org. Chem. 2013. Vol. 49. N 1. P. 272. doi: 10.1134/S1070428013020152
  40. Хуснитдинов Р.Н., Гатауллин Р.Р. // ХГС. 2015. Т. 51. № 9. С. 814; Khusnitdinov R.N., Gataullin R.R. // Chem. Heterocycl. Compd. 2015. Vol. 51. N 9. P. 814. doi: 10.1007/s10593-015-1780-8
  41. Ишмуратов Г.Ю., Яковлева М.П., Шутова М.А., Муслухов Р.Р., Толстиков А.Г. // Макрогетероциклы. 2014. Т. 7. № 4. С. 391; Ishmuratov G.Yu., Yakovleva M.P., Shutova M.A., Muslukhov R.R., Tolstikov A.G. // Macroheterocycles. 2014. Vol. 7. N 4. P. 391. doi: 10.6060/mhc140598y
  42. Кувшинова Е.М., Горнухина О.В., Семейкин А.С., Вершинина И.А., Сырбу С.А. // Изв. вузов. Сер. хим. и хим. технол. 2020. Т. 63. № 9. С. 49. doi: 10.6060/ivkkt.20206309.6218
  43. Kataev V.E., Khaybullin R.N., Strobykina I.Yu. // Rev. J. Chem. 2011. Vol. 1. N 2. P. 93. doi: 10.1134/S2079978011010043
  44. Петров О.А., Садовская И.Н. // Изв. вузов. Сер. хим. и хим. технол. 2017. Т. 60. № 3. С. 36. doi: 10.6060/tcct.2017603.5543
  45. Gunther H. NMR Spectroscopy − An Introduction. New York: John Wiley & Sons, 1980.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Scheme 1

Download (322KB)
3. Scheme 2

Download (112KB)
4. Fig. 1. Area of signals of protons H8b, H3a, H2, H3 and H8b′, H3a′, H2′, H3′ in the 1H NMR spectrum of compound 3a taken in CDCl3. The ratio of integral intensities of the doubled signals is ≈ 3.7:1

Download (246KB)
5. Scheme 3

Download (117KB)
6. Fig. 2. Area of signals of protons H8b,8b′, H3a,3a′, H2 2′ and H3,3′ in the 1H NMR spectrum of compound 4a taken in CDCl3

Download (222KB)
7. Scheme 4

Download (169KB)
8. Fig. 3. Area of signals of protons H8b,8b′, H3a,3a′, H2 2′, H3,3′ and 5,5′-NH2 in the 1H NMR spectrum of compound 5 taken in CDCl3

Download (251KB)
9. Scheme 5

Download (111KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies