Aqueous submicron dispersions of surfactants as wetting agents and permeability enhancers of potato leaves

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For aqueous solutions and submicron dispersions of non-micelle-forming surfactants (Tween 85, Brij L4, and Silwet L-77) kinetic tensiometric dependences and isotherms of wetting of leaves of the Prime potato variety were obtained. A technique has been developed for determining the rate of penetration of the studied liquids into potato leaves. The rate of penetration rises with increasing surfactant concentration. An increase in permeability and wetting efficiency is observed as following: Tween 85 < Brij L4 < Silwet L-77. The data obtained make it possible to evaluate the prospects for using the studied aqueous surfactant dispersions as platforms for the delivery of biologically active components into the leaves of potato plants to inhibit the proliferation of pathogens.

About the authors

N. M. Zadymova

Lomonosov Moscow State University

Email: nzadymova@gmail.com

Yu. D. Aleksandrov

Lomonosov Moscow State University;Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences

N. O. Kalinina

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences;Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

M. E. Taliansky

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences

Z. N. Skvortsova

Lomonosov Moscow State University;Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences

References

  1. Игнатов А.Н., Панычева Ю.С., Воронина М.В., Васильев Д.М., Джалилов Ф.С. // Картофель и овощи. 2019. Т. 9. C. 8. doi: 10.25630/PAV.2019.57.62.003
  2. Cillo F., Palukaitis P. // Adv. Virus Res. 2014. Vol. 90. P. 35. doi: 10.1016/B978-0-12-801246-8.00002-0
  3. Morozov S.Y., Solovyev A.G., Kalinina N.O., Taliansky M.E. // Acta Nat. 2019. Vol. 11. P. 13. doi: 10.32607/20758251-2019-11-4-13-21
  4. Zhu F., Cao Ch., Cao L., Li F., Du F, Huang Q. // Molecules. 2019. Vol. 24. P. 2094. doi: 10.3390/molecules24112094
  5. He Y., Xiao S., Wu J., Fang H. // Applied Sciences. 2019. Vol. 9. P. 593. doi: 10.3390/app9030593
  6. Taylor P. // Curr. Opin. Colloid Interface Sci. 2011. Vol. 16. P. 326. doi: 10.1016/j.cocis.2010.12.003
  7. Massinon M., Lebeau F. // Biotechnol. Agron. Soc. Environ. 2013. Vol. 17. N 3. P. 494.
  8. Puente D.W., Baur P. // Pest Manag Sci. 2011. Vol. 67. N 7. P. 798. doi: 10.1002/ps.2116
  9. Holloway P.J. // Pestic. Sci. 1970. Vol. 1. N 4. P. 156. doi: 10.1002/ps.2780010411
  10. Fernández V., Gil-Pelegrín E., Eichert T. // Plant J. 2021. Vol. 105. N 4. P. 870. doi: 10.1111/tpj.15090
  11. Gaskin R.E., Steele K.D., Forster W.A. // New Zealand Plant Protection. 2005. Vol. 58. P. 179. doi: 10.30843/nzpp.2005.58.4244
  12. De Ruiter H., Uffing A.J.M., Meinen E., Prins A. // Weed Sci. 1990. Vol. 38. N 6. P. 567. doi: 10.1017/s004317450005150x
  13. Price C.E., Anderson N.H. // Pestic. Sci. 1985. Vol. 16. P. 369. doi: 10.1002/ps.2780160411
  14. Schreiber L., Schönherr J. // Pestic. Sci. 1992. Vol. 36. P. 213. doi: 10.1002/ps.2780360307
  15. Dybing C.D., Currier H.B. // Plant Physiol. 1961. Vol. 36. N 2. P. 169. doi: 10.1104/pp.36.2.169
  16. Barlas N.T., Bahamonde H.A., Pimentel C., Domínguez-Huidobro P., Pina C.M., Fernández V. // Plants J. 2023. Vol. 12. N 12. P. 2357. doi: 10.3390/plants12122357
  17. Schreel J.D., Leroux O., Goossens W., Brodersen C., Rubinstein A., Steppe K. // Plant. 2020. Vol. 103. N 2. P. 769. https://doi.org/10.1111/tpj.14770
  18. Задымова Н.М., Кармашева Н.В., Потешнова М.В., Цикурина Н.Н. // Коллоид. ж. 2002. Т. 64. № 4. С. 449
  19. Zadymova N.M., Karmasheva N.V., Poteshnova M.V., Tsikurina N.N. // Colloid J. 2002. Vol. 64. N 11. P. 400. doi: 10.1023/A:1016803616982
  20. Задымова Н.М., Куруленко В.В. // Коллоид. ж. 2022. Т. 84. № 1. С. 23
  21. Zadymova N.M., Kurulenko V.V. // Colloid J. 2022. Vol. 84. N 1. P. 20. doi: 10.1134/S1061933X22010148
  22. Задымова Н.М., Малашихина А.А. // Коллоид. ж. 2023. Т. 85. № 3. С. 296
  23. Zadymova N.M., Malashihina A.A. // Colloid J. 2023. V. 85. N 3. P. 366. doi: 10.1134/S1061933X23600173
  24. Berg J.C. An Introduction to Interfaces and Colloids: The Bridge to Nanoscience. New Jersey: World Scientific, 2009. P. 251, 223. doi: 10.1142/7579
  25. Silwet™ L-77 Silicone Surfactant/Technical Data Sheet. https://www.momentive.com/docs/default-source/tds/silwet/silwet-l-77-tds.pdf
  26. Sankaran A., Karakashev S.I., Sett S., Grozev N., Yarin A.L. // Adv. Colloid Interface Sci. 2019. Vol. 263. P. 1. doi: 10.1016/j.cis.2018.10.006
  27. Zadymova N.M., Poteshnova M.V. // Colloid Polym. Sci. 2019. Vol. 297. P. 453. doi: 10.1007/s00396-018-4447-z

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies