Highly efficient one pot electrocatalytic method for transforming alcohols to nitriles

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A one pot electrocatalytic method was developed for the oxidative transformation of alcohols into nitriles in a two-phase aqueous-organic medium: methylene chloride-aqueous sodium bicarbonate solution. Under the proposed conditions, the catalytic system 4-acetylamino-2,2,6,6-tetramethylpiperidine-1-oxyl-pyridine base with the participation of ammonium iodide makes it possible to convert a wide range of alcohols into nitriles with good to excellent yields (81-99%) without the use of catalysts based on toxic metals, hazardous reagents and/or oxidizing agents. In the synthesis, ammonium iodide is simultaneously a source of nitrogen and iodine, and also functions as a component of the background electrolyte.

About the authors

E. N Shubina

Don State Technical University;M.I. Platov South Russian State Polytechnic University (NPI)

V. P Kashparova

M.I. Platov South Russian State Polytechnic University (NPI)

Email: kashparova2013@mail.ru

V. S Bukurova

Don State Technical University

Ya. V. Kataria

M.I. Platov South Russian State Polytechnic University (NPI)

I. Yu. Zhukova

Don State Technical University

Email: iyuzh@mail.ru

References

  1. Kumar S., Dixit S.K., Awasthi S.K. // Tetrahedron Letters. 2014. Vol. 55. N 28. P. 3802. doi: 10.1016/j.tetlet.2014.05.050
  2. Mukherjee A., Srimani D., Chakraborty S., Ben-David Y., Milstein D. // J. Am. Chem. Soc. 2015. Vol. 137. N 28. P. 8888. doi: 10.1021/jacs.5b04879
  3. Battilocchio C., Hawkins J.M., Ley S.V. // Org. Lett. 2014. Vol. 16. P. 1060. doi: 10.1021/ol403591c
  4. Kamitanaka T., Yamamoto K., Matsuda T., Harada T. // Tetrahedron. 2008. Vol. 64. P. 5699. doi: 10.1016/j.tet.2008.04.029
  5. Fatiadi A.J. Preparation and Synthetic Applications of Cyano Compounds. New York: Wiley, 1983. Р. 1057. doi: 10.1002/9780470771709.ch9
  6. Anbarasan P., Schareina T., Beller M. // Chem. Soc. Rev. 2011. Vol. 40. N 10. P. 5049. doi: 10.1039/C1CS15004A
  7. Ragab F.A., Abdel Gawad N.M., Georgey H.H., Said M.F. // Eur. J. Med. Chem. 2013. Vol. 63. P. 645. doi: 10.1016/j.ejmech.2013.03.005
  8. Bini L., Muller C., Wilting J., Chrzanowski L., Spek A.L., Vogt D. // J. Am. Chem. Soc. 2007. Vol. 129. N 42. P. 12622. doi: 10.1021/ja074922e
  9. Yang S.H., Chang S. // Org. Lett. 2001. Vol. 3. N 26. P. 4209. doi: 10.1021/ol0168768
  10. Beletskaya I.P., Sigeev A.S., Peregudov A.S., Petrovskii P.V. // J. Organomet. Chem. 2004. Vol. 689. N 23. P. 3810. doi: 10.1016/j.jorganchem.2004.07.019
  11. Schareina T., Zapf A., Mägerlein W., Muller N., Beller M. // Tetrahedron Lett. 2007. Vol. 48. N 7. P. 1087. doi: 10.1016/j.tetlet.2006.12.087
  12. Prasad P.K., Sudalai A. // Adv. Synth. Catal. 2014. Vol. 356. N 10. P. 2231. doi: 10.1002/adsc.201301155
  13. Sundermeier M., Zapf A., Beller M., Sans J. // Tetrahedron Lett. 2001. Vol. 42. N 38. P. 6707. doi: 10.1016/S0040-4039(01)01390-9
  14. Rajender R.K, Uma Maheswari C., Venkateshwar M. // Tetrahedron Lett. 2009. Vol. 50. N 18. P. 2050. doi: 10.1016/j.tetlet.2009.02.057
  15. Zolfigol M.A., Hajjami M., Ghorbani-Choghamarani A. // Bull. Korean. Chem. Soc. 2011. Vol. 32. P. 4191. doi: 10.5012/bkcs.2011.32.12.4191
  16. Zhongquan F., Chen Ch., Zhenlu Sh., Meichao L. // Chem. J. Chinese Univ. 2018. Vol. 39. N 1. P.78. doi: 10.7503/cjcu20170245
  17. Zhongquan F., Xianjing Y., Chen Ch., Zhenlu Sh., Meichao L. // J. Electrochem. Soc. 2017. V.ol 164. N 4. G54. doi: 10.1149/2.1561704jes
  18. Zhu C., Ji L., Wei Y. // Synthesis. 2010. Vol. 18. P. 3121. doi: 10.1055/s-0030-1258162.
  19. Enthaler S., Weidauer M., Schröder F. // Tetrahedron Lett. 2012. Vol. 53. N 7. P. 882. doi: 10.1016/j.tetlet.2011.12.036
  20. Sridhar M., Reddy M.K.K., Sairam V.V. // Tetrahedron Lett. 2012. Vol. 53. N 27. P. 3421. doi org/10.1016/j.tetlet.2012.04.057
  21. Rodrigues R.M., Thadathil D.A., Ponmudi K., George A., Varghese A. // ChemistrySelect. 2022. Vol. 7. N 12. P. e202200081. doi: 10.1002/slct.202200081
  22. Dong F., Chen H., Malapit Ch.A., Prater M.B., Li M., Yuan M., Lim K., Minteer Sh.D. // J. Am. Chem. Soc. 2020. Vol. 142. N 18. P. 8374. doi: 10.1021/jacs.0c01890
  23. Francke R., Little R.D. // Chem. Soc. Rev. 2014. Vol. 43. N 8. P. 2492. doi: 10.1039/C3CS60464K
  24. Cao Q., Dornan L.M., Rogan L., Louise Hughes N., Muldoon M.J. // Chem. Commun. 2014. Vol. 50. P. 4524. doi: 10.1039/C3CC47081D
  25. Ciriminna R., Pagliaro M. // Org. Proc. Res. Dev. 2010. Vol. 14. P. 245. doi: 10.1021/op900059x
  26. Chen Q.G., Fang C.J., Shen Z.L., Li M.C. // Electrochem. Commun. 2016. Vol. 64. P. 51. doi: 10.1016/j.elecom.2016.01.011
  27. Yang X., Fan Zh., Shen Zh., Li M. // Electrochim. Acta. 2017. Vol. 226. P.53. doi: 10.1016/j.electacta.2016.12.168
  28. Каган Е.Ш., Кашпарова В.П., Жукова И.Ю., Кашпаров И.И. // ЖПХ. 2010. Т.83. Вып. 4. С. 693
  29. Kagan E.S., Kashparova V.P., Zhukova I.Yu., Kashparov I.I. // Russ. J. Appl. Chem. 2010. Vol. 83. N 4. P. 745. doi: 10.1134/S1070427210040324
  30. Кашпарова В.П, Шубина Е.Н., Жукова И.Ю., Ильчибаева И.Б., Смирнова Н.В., Каган Е.Ш. // Изв. вузов. Сер. хим. и хим. технол. 2019. Т. 62. № 9. С. 33. doi: 10.6060/ivkkt.20196209.5923
  31. Кашпарова В.П., Шубина Е.Н., Ильчибаева И.Б., Кашпаров И.И., Жукова И.Ю., Каган Е.Ш. // Электрохимия. 2020. T. 56. № 5. С. 446. doi: 10.31857/S0424857020050059
  32. Kashparova V.P., Shubina E.N., Il'chibaeva I.B., Kashparov I.I., Zhukova I.Yu., Kagan E.Sh. // Russ. J. Electrochem. 2020. Vol. 56. P. 422. doi: 10.1134/S1023193520050055
  33. Vatèle J.-M. // Synlett. 2014. Vol. 25. N 9. P. 1275. doi: 10.1055/s-0033-1341124
  34. Fan Z., Yang X., Chen C., Shen Z., Li M. // J. Electrochem. Soc. 2017. Vol. 164. N 4. P. 54. doi: 10.1149/2.1561704jes
  35. Kashparova V.P., Klushin V.A., Leontyeva D.V., Smirnova N.V., Chernyshev V.M., Ananikov V.P. // Chem Asian J. 2016. Vol. 11. N 18. P. 2578. doi org/10.1002/asia.201600801
  36. Semmelhack M.F., Chou C.S., Cortes D.A. // J. Am. Chem. Soc. 1983. Vol. 105. N 13. P. 4492. doi: 10.1021/ja00351a070
  37. Bobbitt J.M., BrüCkner C., Merbouh N. // Org. React. 2009. P. 103. doi: 10.1002/0471264180.or074.02
  38. Ciriminna R., Pandarus V., Béland F., Xu Y.-J., Pagliaro M. // Org. Proc. Res. Develop. 2015. Vol. 19. N 11. P. 1554. doi: 10.1021/acs.oprd.5b00204
  39. Bobbitt J.M., Bartelson A.L., Bailey W.F., Hamlin T.A., Kelly C.B. // J. Org. Chem. 2014. N 79. P. 1055. doi: 10.1021/jo402519m
  40. Sandford C., Edwards M.A., Klunder K., Hickey D.P., Li M., Barman K., Sigman M.S., White H.S., Minteer, S.D. // Chem. Sci. 2019. Vol. 10. P. 6404. doi: 10.1039/c9sc01545k
  41. Яралиев Я.А. // Усп. хим. 1982. № 6. С. 990
  42. Yaraliev Y.A. // Russ. Chem. Rev. 1982. Vol. 51. N 6. P. 566. doi: 10.1070/RC1982v051n06ABEH002866
  43. Kolthoff I.M., Jordan J. // J. Am. Chem. Soc. 1953. Vol. 75. Р. 1571. doi: 10.1023/A:1016626006594
  44. Bernal-Uruchurtu M.I., Kerenskaya G., Janda K.C. // Int. Rev. Phys. Chem. 2009. Vol. 28. N 2. P. 223. doi: 10.1080/01442350903017302
  45. Алукер Н.Л., Herrmann M. // Опт. и спектр. 2021. Т. 129. Вып. 5. С. 659. doi: 10.21883/OS.2021.05.50895.303-20
  46. Gardner J.M., Abrahamsson M., Farnum B.H., Meyer G.J. // J. Am. Chem. Soc. 2009. Vol. 131. N 44. P. 16206. doi: 10.1021/ja905021c
  47. Кашпарова В.П., Леонтьева Д.В., Клушин В.А., Жукова И.Ю., Смирнова Н.В. // Инженерный вестник Дона. 2016. № 4.
  48. Ward J.S., Gomila R.M., Frontera A., Rissanen K. // RSC Adv. 2022. Vol. 12. P. 8674. doi: 10.1039/d2ra01390h
  49. Verhoef J.C., Barendrecht E. // Electrochim. Acta. 1978. Vol. 23. N 5. P. 433. doi: 10.1016/0013-4686(78)87042-X
  50. Talukdar S., Hsu J.L, Chou T.C. // Tetrahedron Lett. 2001. Vol. 42. P. 1103. doi: 10.1016/S0040-4039(00)02195-X
  51. Qu Q., Gao X., Gao J., Yuan G. // Sci. China Chem. 2015. Vol. 58. N 4. P. 747. doi: 10.1007/s11426-015-5331-z
  52. Kashparova V.P., Klushin V.A., Zhukova I.Yu., Kashparov I.S., Chernysheva D.V., Il'chibaeva I.B., Smirnova N.V., Kagan E.Sh., Chernyshev V.M. // Tetrahedron Lett. 2017. Vol. 58. N 36. P. 3517. doi: 10.1016/J.TETLET.2017.07.088
  53. Hayness W.M., Lide D.R., Bruno T.J. Handbook of chemistry and physics. New York: CRC Press Taylor & Francis Group, 2014. 2666 p.
  54. Kim J., Stahl S.S. // ACS Catal. 2013. Vol. 3. N 7. P. 1652. doi: 10.1021/cs400360e; http://pubs.acs.org
  55. OdanChem. https://www.odanchem.org

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».