Bisisocyanide cyclometallated platinum(II) complexes: synthesis, structure, photophysical properties, and mechanochromic behavior

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A series of cyclometallated platinum(II) complexes [Pt(ppy){CNAr}2]X with two isocyanide ligands (Hppy = 2-phenylpyridine, Ar = C6H2-2,4,6-Me3, C6H3-2-Cl-6-Me , C6H3-2,6-Cl2, C6H4-4-NMe2, C6H4-4-Me, C6H4 4-Cl, C6H4-4-Br, C6H4-4-I, C6H4-4-CF3, C6H4-3-CF3; X = BF4, OTf) was synthesized by the reaction of the [{Pt(ppy)Cl}2] dimer with isocyanides (yield 52-70%). The structure of the resulting complexes was determined using mass spectrometry, 1H, 13C{1H}, 195Pt{1H}, 1H-1H COSY, 1H-1H NOESY, 1H-13C HSQC, and 1H-13C HMBC NMR spectroscopy in solution and solid-state CP/MAS 13C and 195Pt NMR spectroscopy, IR spectroscopy and X-ray diffraction analysis in the solid phase. The photophysical properties of the obtained complexes in the solid phase and the mechanochromic luminescence behavior were studied. In the solid phase, all synthesized compounds phosphoresce in the green or orange range of visible light, while photoluminescence quantum yields reach 26%. Green phosphors exhibit a reversible mechanochromic luminescence change achieved by mechanical grinding (green to orange) and solvent adsorption (orange to green).

About the authors

S. A Katkova

St. Petersburg State University

Email: s.katkova@spbu.ru

E. V Sokolova

St. Petersburg State University

M. A Kinzhalov

St. Petersburg State University

References

  1. Kinzhalov M.A., Grachova E.V., Luzyanin K.V. // Inorg. Chem. Front. 2022. Vol. 9. N 3. P. 417. doi: 10.1039/d1qi01288f
  2. Adachi C., Baldo M.A., Thompson M.E., Forrest S.R. // J. Appl. Phys. 2001. Vol. 90. N 10. P. 5048. doi: 10.1063/1.1409582
  3. Baldo M.A., Lamansky S., Burrows P.E., Thompson M.E., Forrest S.R. // Appl. Phys. Lett. 1999. Vol. 75. N 1. P. 4-6. doi: 10.1063/1.124258
  4. McGhie B.S., Aldrich-Wright J.R. // Biomedicines. 2022. Vol. 10. N 3. P. 578. doi: 10.3390/biomedicines10030578
  5. Lee L.C.-C., Lo K.K.-W. // J. Am. Chem. Soc. 2022. Vol. 144. N 32. P. 14420. doi: 10.1021/jacs.2c03437
  6. Na H., Maity A., Morshed R., Teets T.S. // Organometallics. 2017. Vol. 36. N 15. P. 2965. doi: 10.1021/acs.organomet.7b00428
  7. Fornies J., Sicilia V., Larraz C., Camerano J.A., Martin A., Casas J.M., Tsipis A.C. // Organometallics. 2010. Vol. 29. N 6. P. 1396. doi: 10.1021/om901032v
  8. Sanning J., Stegemann L., Ewen P.R., Schwermann C., Daniliuc C.G., Zhang D., Lin N., Duan L., Wegner D., Doltsinis N.L., Strassert C.A. // J. Mater. Chem. (C). 2016. Vol. 4. N 13. P. 2560. doi: 10.1039/C6TC00093B
  9. Solomatina A.I., Aleksandrova I.O., Karttunen A.J., Tunik S.P., Koshevoy I.O. // Dalton Trans. 2017. Vol. 46. N 12. P. 3895. doi: 10.1039/C7DT00349H
  10. Chen Y., Lu W., Che C.-M. // Organometallics. 2013. Vol. 32. N 1. P. 350. doi: 10.1021/om300965b
  11. Paziresh S., Babadi Aghakhanpour R., Fuertes S., Sicilia V., Niroomand Hosseini F., Nabavizadeh S.M. // Dalton Trans. 2019. Vol. 48. N 17. P. 5713. doi: 10.1039/c9dt00807a
  12. Sutton G.D., Olumba M.E., Nguyen Y.H., Teets T.S. // Dalton Trans. 2021. Vol. 50. N 48. P. 17851. doi: 10.1039/D1DT03312C
  13. Katkova S.A., Luzyanin K.V., Novikov A.S., Kinzhalov M.A. // New J. Chem. 2021. Vol. 45. N 6. P. 2948. doi: 10.1039/D0NJ05457G
  14. Sokolova E.V., Kinzhalov M.A., Smirnov A.S., Cheranyova A.M., Ivanov D.M., Kukushkin V.Y., Bokach N.A. // ACS Omega. 2022. Vol. 7. N 38. P. 34454. doi: 10.1021/acsomega.2c04110
  15. Solomatina A.I., Krupenya D.V., Gurzhiy V.V., Zlatkin I., Pushkarev A.P., Bochkarev M.N., Besley N.A., Bichoutskaia E., Tunik S.P. // Dalton Trans. 2015. Vol. 44. N 16. P. 7152. doi: 10.1039/c4dt03106g
  16. Yam V.W.W., Law A.S.Y. // Coord. Chem. Rev. 2020. Vol. 414. P. 213298. doi: 10.1016/j.ccr.2020.213298
  17. Wang P.P., Miao X.R., Meng Y., Wang Q., Wang J., Duan H.H., Li Y.W., Li C.Y., Liu J., Cao L.P. // ACS Appl. Mater. Interfaces. 2020. Vol. 12. N 20. P. 22630. doi: 10.1021/acsami.0c04917
  18. Koshevoy I.O., Krause M., Klein A. // Coord. Chem. Rev. 2020. Vol. 405. P. 213094. doi: 10.1016/j.ccr.2019.213094
  19. Diez A., Fornies J., Larraz C., Lalinde E., Lopez J.A., Martin A., Moreno M.T., Sicilia V. // Inorg. Chem. 2010. Vol. 49. N 7. P. 3239. doi: 10.1021/ic902094c
  20. Martinez-Junquera M., Lara R., Lalinde E., Moreno M.T. // J. Mater. Chem. (C). 2020. Vol. 8. N 21. P. 7221. doi: 10.1039/d0tc01163k
  21. Diez A., Fornies J., Fuertes S., Lalinde E., Larraz C., Lopez J.A., Martin A., Moreno M.T., Sicilia V. // Organometallics. 2009. Vol. 28. N 6. P. 1705. doi: 10.1021/om800845c
  22. Fornies J., Sicilia V., Borja P., Casas J.M., Diez A., Lalinde E., Larraz C., Martin A., Moreno M.T. // Chem. Asian J. 2012. Vol. 7. N 12. P. 2813. doi: 10.1002/asia.201200585
  23. Shahsavari H.R., Babadi Aghakhanpour R., Hossein-Abadi M., Golbon Haghighi M., Notash B., Fereidoonnezhad M. // New J. Chem. 2017. Vol. 41. N 24. P. 15347. doi: 10.1039/C7NJ03110F
  24. Sivchik V.V., Grachova E.V., Melnikov A.S., Smirnov S.N., Ivanov A.Y., Hirva P., Tunik S.P., Koshevoy I.O. // Inorg. Chem. 2016. Vol. 55. N 7. P. 3351. doi: 10.1021/acs.inorgchem.5b02713
  25. Dobrynin M.V., Kasatkina S.O., Baykov S.V., Savko P.Y., Antonov N.S., Mikherdov A.S., Boyarskiy V.P., Islamova R.M. // Dalton Trans. 2021. Vol. 50. N 42. P. 14994. doi: 10.1039/D1DT02823E
  26. Dobrynin M.V., Sokolova E.V., Kinzhalov M.A., Smirnov A.S., Starova G.L., Kukushkin V.Y., Islamova R.M. // ACS Appl. Polymer Mater. 2021. Vol. 3. N 2. P. 857. doi: 10.1021/acsapm.0c01190
  27. Anderson C., Crespo M., Morris J., Tanski J.M. // J. Organomet. Chem. 2006. Vol. 691. N 26. P. 5635. doi: 10.1016/j.jorganchem.2006.09.012
  28. Liu J., Leung C.H., Chow A.L.F., Sun R.W.Y., Yan S.C., Che C.M. // Chem. Commun. 2011. Vol. 47. N 2. P. 719. doi: 10.1039/c0cc03641b
  29. Sun R.W.Y., Chow A.L.F., Li X.H., Yan J.J., Chui S.S.Y., Che C.M. // Chem. Sci. 2011. Vol. 2. N 4. P. 728. doi: 10.1039/c0sc00593b
  30. Sagara Y., Kato T. // Nat. Chem. 2009. Vol. 1. N 8. P. 605. doi: 10.1038/nchem.411
  31. Chi Z., Zhang X., Xu B., Zhou X., Ma C., Zhang Y., Liu S., Xu J. // Chem. Soc. Rev. 2012. Vol. 41. N 10. P. 3878. doi: 10.1039/C2CS35016E
  32. Sagara Y., Yamane S., Mitani M., Weder C., Kato T. // Adv. Mater. 2016. Vol. 28. N 6. P. 1073. doi: 10.1002/adma.201502589
  33. Huang Q., Li W., Yang Z., Zhao J., Li Y., Mao Z., Yang Z., Liu S., Zhang Y., Chi Z. // CCS Chem. 2022. Vol. 4. N 5. P. 1643. doi doi: 10.31635/ccschem.021.202100968
  34. Su M., Liu S., Zhang J., Meng C., Ni J. // Dyes Pigm. 2022. Vol. 200. P. 110139. doi: 10.1016/j.dyepig.2022.110139
  35. Ito S. // CrystEngComm. 2022. Vol. 24. N 6. P. 1112. doi: 10.1039/D1CE01614H
  36. Riesebeck T., Bertrams M.-S., Stipurin S., Konowski K., Kerzig C., Strassner T. // Inorg. Chem. 2022. Vol. 56. N16. P. 9391. doi: 10.1021/acs.inorgchem.2c02141
  37. Zhang H.-H., Wu S.-X., Wang Y.-Q., Xie T.-G., Sun S.-S., Liu Y.-L., Han L.-Z., Zhang X.-P., Shi Z.-F. // Dyes Pigm. 2022. Vol. 197. P. 109857. doi: 10.1016/j.dyepig.2021.109857
  38. Yang C.-J., Yi C., Xu M., Wang J.-H., Liu Y.-Z., Gao X.-C., Fu J.-W. // Appl. Phys. Lett. 2006. Vol. 89. N 23. P. 233506. doi: 10.1063/1.2400395
  39. Ni J., Liu G., Su M., Zheng W., Zhang J. // Dyes Pigm. 2020. Vol. 180. P. 108451. doi: 10.1016/j.dyepig.2020.108451
  40. Каткова С.А., Лещев А.А., Михердов А.С., Кинжалов М.А. // ЖОХ. 2020. Т. 90. № 4. С. 591
  41. Katkova S.A., Leshchev A.A., Mikherdov A.S., Kinzhalov M.A. // Russ. J. Gen. Chem. 2020. Vol. 90. N 4. P. 648. doi: 10.1134/s1070363220040143
  42. Каткова С.А., Михердов А.С., Новиков А.С., Старова Г.Л., Кинжалов М.А. // ЖОХ. 2021. Т. 91. № 3. С. 430
  43. Katkova S.A., Eliseev I.I., Mikherdov A.S., Sokolova E.V., Starova G.L., Kinzhalov M.A. // Russ. J. Gen. Chem. 2021. Vol. 91. N 3. P. 393. doi: 10.1134/s1070363221030099
  44. Katkova S.A., Mikherdov A.S., Sokolova E.V., Novikov A.S., Starova G.L., Kinzhalov M.A. // J. Mol. Struct. 2022. Vol. 1253. P. 132230. doi: 10.1016/j.molstruc.2021.132230
  45. Diez-Gonzalez S., Nolan S.P. // Coord. Chem. Rev. 2007. Vol. 251. N 5-6. P. 874. doi: 10.1016/j.ccr.2006.10.004
  46. Sicilia V., Fuertes S., Martin A., Palacios A. // Organometallics. 2013. Vol. 32. N 15. P. 4092. doi: 10.1021/om400159g
  47. Popov R.A., Mikherdov A.S., Boyarskiy V.P. // Eur. J. Inorg. Chem. 2022. Vol. 2022. N 26. P. e202200217. doi: 10.1002/ejic.202200217.
  48. Кинжалов М.А., Кашина М.В., Михердов А.С., Каткова С.А, Суслонов В.В. // ЖOX, 2018. T. 88. № 6. С. 1000
  49. Kinzhalov M.A., Kashina M.V., Mikherdov A.S., Katkova S.A., Suslonov V.V. // Russ. J. Gen. Chem. 2018. Vol. 88. N 6. P. 1180. doi: 10.1134/S107036321806021X
  50. Кинжалов М.А., Боярский В.П. // ЖОХ. 2015. Т. 85. № 10. С. 1681
  51. Kinzhalov M.A., Boyarskii V.P. // Russ. J. Gen. Chem. 2015. Vol. 85. N 10. P. 2313. doi: 10.1134/S1070363215100175
  52. Beer H., Bresien J., Michalik D., Rölke A.-K., Schulz A., Villinger A., Wustrack R. // J. Org. Chem. 2020. Vol. 85. N 22. P. 14435. doi: 10.1021/acs.joc.0c00460.
  53. Guirado A., Zapata A., Gómez J.L., Trabalón L., Gálvez J. // Tetrahedron. 1999. Vol. 55. N 31. P. 9631. doi: 10.1016/S0040-4020(99)00509-8
  54. Pazderski L., Pawlak T., Sitkowski J., Kozerski L., Szłyk E. // Magn. Reson. Chem.. 2009. Vol. 47. N 11. P. 932. doi: 10.1002/mrc.2491
  55. Bondi A. // J. Phys. Chem. 1964. Vol. 68. N 3. P. 441. doi: 10.1021/j100785a001
  56. Fuertes S., Chueca A.J., Peralvarez M., Borja P., Torrell M., Carreras J., Sicilia V. // ACS Appl. Mater. Interfaces. 2016. Vol. 8. N 25. P. 16160. doi: 10.1021/acsami.6b03288
  57. Kinzhalov M.A., Katkova S.A., Doronina E.P., Novikov A.S., Eliseev I., Ilichev V.A., Kukinov A.A., Starova G.L., Bokach N.A. // Zeit. Kristallogr. Cryst. Mater. 2018. Vol. 233. N 11. P. 795. doi: 10.1515/zkri-2018-2075
  58. Shimizu M. In: Aggregation-Induced Emission. Elsevier, 2022. Ch. 8. Р. 253.
  59. Hubschle C.B., Sheldrick G.M., Dittrich B. // J. Appl. Crystallogr. 2011. Vol. 44. N 6. P. 1281. doi: 10.1107/S0021889811043202
  60. Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A., Puschmann H. // J. Appl. Crystallogr. 2009. Vol. 42. N 2. P. 339. doi: 10.1107/S0021889808042726
  61. CrysAlisPro A.T., Version 1.171.36.20 (release 27-06-2012).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies