HYDROTHERMAL SYNTHESIS OF AQUEOUS SOLS OF NANOCRYSTALLINE HAFNIUM DIOXIDE STABILIZED BY LACTIC ACID AND THEIR ENZYME-LIKE ACTIVITIES
- 作者: Taran G.S1, Sheichenko E.D1,2, Popkov M.A1, Novoselova K.N1,2, Kochenkova Y.A1,2, Filippova A.D1, Baranchikov A.E1,2, Ivanov V.K1,2
-
隶属关系:
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- International Research University Higher School of Economics
- 期: 卷 69, 编号 12 (2024)
- 页面: 1763-1773
- 栏目: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://journals.rcsi.science/0044-457X/article/view/289009
- DOI: https://doi.org/10.31857/S0044457X24120092
- EDN: https://elibrary.ru/IWMMCM
- ID: 289009
如何引用文章
详细
作者简介
G. Taran
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
E. Sheichenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; International Research University Higher School of EconomicsMoscow, Russia
M. Popkov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
K. Novoselova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; International Research University Higher School of EconomicsMoscow, Russia
Yu. Kochenkova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; International Research University Higher School of EconomicsMoscow, Russia
A. Filippova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
A. Baranchikov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; International Research University Higher School of Economics
Email: a.baranchikov@yandex.ru
Moscow, Russia
V. Ivanov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; International Research University Higher School of EconomicsMoscow, Russia
参考
- Ramadoss A., Krishnamoorthy K., Kim S.J. // Mater. Res. Bull. 2012. V. 47. № 9. P. 2680. https://doi.org/10.1016/j.materresbull.2012.05.051
- Wang J., Li H.P., Stevens R. // J. Mater. Sci. 1992. V. 27. № 20. P. 5397. https://doi.org/10.1007/BF00541601
- Robertson J. // Eur. Phys. J. - Appl. Phys. 2004. V 28. P. 265. https://api.semanticscholar.org/CorpusID:28017611
- Bersuker G., Gilmer D.C., Veksler D. et al. // Tech. Dig. — Int. Electron Devices Meet. 2010. P. 456. https://doi.org/10.1109/IEDM.2010.5703394
- Yu S., Guan X., Wong H.S.P. // Appl. Phys. Lett. 2011. V. 99. № 6. P. 2011. https://doi.org/10.1063/1.3624472
- Lee H.Y., Chen Y.S., Chen P.S. et al. // IEEE Int. 2010. V. 55. № 1. P. 19.7.1. https://doi.org/10.1109/IEDM.2010.5703395
- Al-Kuhaili M.F., Durrani S.M.A., Bakhtiari I.A. et al. // Mater. Chem. Phys. 2011. V. 126. № 3. P. 515. https://doi.org/10.1016/j.matchemphys.2011.01.036
- Wang Y., Lin Z., Cheng X. et al. // Appl. Surf. Sci. 2004. V 228. № 1-4. P. 93. https://doi.org/10.1016/j.apsusc.2003.12.028
- Adam J., Rogers M.D. // Acta Crystallogr. 1959. V. 12. № 11. P. 951. https://doi.org/10.1107/s0365110x59002742
- Curtis C.E., Doney L.M., Johnson J.R. // J. Am. Ceram. Soc. 1954. V. 37.№ 10. P. 458. https://doi.org/10.1111/j.1151-2916.1954.tb13977.x
- Ruh R., Garrett H.J., Domagala R.F. et al. // J. Am. Ceram. Soc. 1968. V. 51.№ 1. P. 23.
- Guskov V.N., Gagarin P.G., Guskov A.V. et al. // Russ. J. Inorg. Chem. 2019. V. 64.№ 11. P. 1436. https://doi.org/10.1134/S0036023619110068
- Folomeikin Y.I., Karachevtsev F.N., Stolyarova V.L. // Russ. J. Inorg. Chem. 2019. V. 64. № 7. P. 934. https://doi.org/10.1134/S0036023619070088
- Chaubey G.S., Yao Y., Makongo J.P.A. et al. // RSC Adv. 2012. V. 2. № 24. P. 9207. https://doi.org/10.1039/c2ra21003g
- Giacobbe J., Dunning D.N. // Nucl. Sci. Eng. 1958. V. 4. № 3. P. 467. https://doi.org/10.13182/nse58-a25543
- Cunningham G.W., Foulds A.K., Keller D.L. et al. // Nucl. Sci. Eng. 1958. V. 4. № 3. P. 449. https://doi.org/10.13182/nse58-a25541
- Field J.A., Luna-Velasco A., Boitano S.A. et al. // Chemosphere. 2011. V. 84.№ 10. P. 1401. https://doi.org/10.1016/j.chemosphere.2011.04.067
- Bagley A.F., Ludmir E.B., Maitra A. et al. // Clin. Transl. Radiat. Oncol. 2022. V. 33. P. 66. https://doi.org/10.1016/j.ctro.2021.12.012
- Maggiorella L., Barouch G., Devaux C. et al. // Futur. Oncol. 2012. V. 8. № 9. P. 1167. https://doi.org/10.2217/fon.12.96
- Shcherbakov A.B., Ivanov V.K., Zholobak N.M. et al. // Biophysics (Oxf). 2011. V. 56.№6. P. 987. https://doi.org/10.1134/S0006350911060170
- Shcherbakov A.B., Zholobak N.M., Spivak N.Y. et al. // Russ. J. Inorg. Chem. 2014. V. 59. № 13. P. 1556. https://doi.org/10.1134/S003602361413004X
- Ivanova O.S., Shekunova T.O., Ivanov V.K. et al. // Dokl. Chem. 2011. V. 437. № 2. P. 103. https://doi.org/10.1134/S0012500811040070
- Ivanov V.K., Polezhaeva O.S., Shaporev A.S. et al. // Russ. J. Inorg. Chem. 2010. V. 55.№ 3. P. 328. https://doi.org/10.1134/S0036023610030046
- Stefanic G., Music S., Molcanov K. // J. Alloys Compd. 2005. V 387. № 1-2. P. 300. https://doi.org/10.1016/j.jallcom.2004.06.064
- De Roo J., De Keukeleere K., Feys J. et al. // J. Nanoparticle Res. 2013. V. 15. № 7. https://doi.org/10.1007/s11051-013-1778-z
- Tirosh E., Markovich G. // Adv. Mater. 2007. V. 19. № 18. P. 2608. https://doi.org/10.1002/adma.200602222
- Qi J., Zhou X. // Colloids Surf. A Physicochem. Eng. Asp. 2015. V. 487. P. 26. https://doi.org/10.1016/j.colsurfa.2015.09.037
- Filippova A.D., Baranchikov A.E., Ivanov V.K. // Colloid J. 2023. V. 85. № 5. P. 782. https://doi.org/10.1134/S1061933X23600653
- Elmowafy E.M., Tiboni M., Soliman M.E. // Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles. Singapore: Springer, 2019. https://doi.org/10.1007/s40005-019-00439-x
- Yapryntsev A.D., Baranchikov A.E., Churakov A.V. et al. // RSC Adv. 2021. V. 11.№ 48. P. 30195. https://doi.org/10.1039/d_1ra05923h
- Dhup S., Kumar Dadhich R., Ettore Porporato P. et al. // Curr. Pharm. Des. 2012. V. 18.№ 10. P. 1319. https://doi.org/10.2174/138161212799504902
- Apostolova P., Pearce E.L. // Trends Immunol. 2022. V. 43. № 12. P. 969. https://doi.org/10.1016/j.it.2022.10.005
- Hirschhaeuser F., Sattler U.G.A., Mueller-Klieser W. // Cancer Res. 2011. V. 71.№ 22. P. 6921. https://doi.org/10.1158/0008-5472.CAN-11-1457
- Pohanka M. // Biomed Res. Int. 2020. V. 2020. https://doi.org/10.1155/2020/3419034
- Kakihana M., Kobayashi M., Tomita K. et al. // Bull. Chem. Soc. Jpn. 2010. V. 83.№ 11. P. 1285. https://doi.org/10.1246/bcsj.20100103
- Rose J., De Bruin T.J.M., Chauveteau G. et al. // J. Phys. Chem. B. 2003. V. 107. № 13. P. 2910. https://doi.org/10.1021/jp027114c
- Meskin P.E., Gavrilov A.I., Maksimov V.D. et al. // Russ. J. Inorg. Chem. 2007. V. 52. № 11. P. 1648. https://doi.org/10.1134/S0036023607110022
- Ivanov V.K., Baranchikov A.E., Tret’yakov Y.D. // Russ. J. Inorg. Chem. 2010. V. 55. № 5. P. 665. https://doi.org/10.1134/S0036023610050037
- Hudak B.M., Depner S.W., Waetzig G.R. et al. // Nat. Commun. 2017. V. 8. № May. P. 1. https://doi.org/10.1038/ncomms15316
- Willard H.H., Tang N.K. // J. Am. Chem. Soc. 1937. V. 59. № 7. P. 1190. https://doi.org/10.1021/ja01286a010
- Yapryntsev A.D., Baranchikov A.E., Ivanov V.K. // Russ. Chem. Rev. 2020. V. 89. № 6. P. 629. https://doi.org/10.1070/RCR4920
- Таран Г.С., Баранчиков А.Е., Иванова О.С. и др. // Журн. неорган. химии. 2020. Т. 65. № 6. С. 725. https://doi.org/10.31857/s0044457x20060239
- Baranchikov A.E., Sozarukova M.M., Mikheev I.V. etal.//NewJ. Chem. 2023. V. 47. № 44. P. 20388. https://doi.org/10.1039/D3NJ03728B
- Filippova A.D., Sozarukova M.M., Baranchikov A.E. et al. // Molecules. 2023. V. 28. № 9. https://doi.org/10.3390/molecules28093811
- Teplonogova M.A., Volostnykh M.V., Yapryntsev A.D. et al. // Int. J. Mol. Sci. 2022. V. 23. № 23. https://doi.org/10.3390/ijms232315373
- Qin L., Hu Y., Wei H. // Nanozymes: Preparation and Characterization. 2020. P. 79. https://doi.org/10.1007/978-981-15-1490-6_4
- Vladimirov Y.A., Proskurnina E.V. // Biochem. 2009. V. 74. № 13. P. 1545. https://doi.org/10.1134/S0006297909130082
- Deng M., Xu S., Chen F. // Anal. Methods. 2014. V. 6. № 9. P. 3117. https://doi.org/10.1039/c3ay42135j
- Li C., Shi X., Shen Q. et al. //J. Nanomater. 2018. V. 2018. https://doi.org/10.1155/2018/4857461
- Giussani A., Farahani P., Martnez-Munoz D. et al. // Chem. -AEur.J. 2019. V. 25.№ 20. P. 5202. https://doi.org/10.1002/chem.201805918
- Zhao H., Dong Y., Jiang P. et al. // ACS Appl. Mater. Interfaces. 2015. V. 7. № 12. P. 6451. https://doi.org/10.1021/acsami.5b00023
- Liang X., Han L. // Adv. Funct. Mater. 2020. V. 30. № 28. https://doi.org/10.1002/adfm.202001933
- Aggarwal P., Rana J.S., Chitkara M. et al. // J. Clust. Sci. 2024. V. 35. № 6. P. 2093. https://doi.org/10.1007/s10876-024-02646-5
- Ray C., Dutta S., Sarkar S. et al. // J. Mater. Chem. B. 2014. V. 2.№ 36. P. 6097. https://doi.org/10.1039/C4TB00968A
- Liu P., Liang M., Liu Z. et al. // Nanoscale. 2024. V. 16. №2. P. 913. https://doi.org/10.1039/D3NR04336C
- Sobanska K., Pietrzyk P., Sojka Z. // ACS Catal. 2017. V. 7. № 4. P. 2935. https://doi.org/10.1021/acscatal.7b00189
- Sommers J.A., Hutchison D.C., Martin N.P. et al. // Inorg. Chem. 2021. V. 60. № 3. P. 1631. https://doi.org/10.1021/acs.inorgchem.0c03128
- Aoto H., Matsui K., Sakai Y. et al. // J. Mol. Catal. A: Chem. 2014. V. 394. P. 224. https://doi.org/10.1016/j.molcata.2014.07.020
- Moons J., de Azambuja F., Mihailovic J. et al. // Angew. Chem. Int. Ed. 2020. V. 59. № 23. P. 9094. https://doi.org/10.1002/anie.202001036
补充文件
