Основность и гидридодонорная способность гидридного комплекса палладия(II) с диариламидо-бис-фосфиновым пинцетным лигандом

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Ключевыми стадиями реакций (де)гидрирования, дегидросочетания, получения H2, восстановления CO2 с участием гидридов переходных металлов являются перенос гидрид-иона и перенос протона, а катализаторами данных превращений часто выступают комплексы с бифункциональными лигандами. Целью настоящей работы было исследование гидридодонорных свойств пинцетного гидрида палладия(II) (PNP)PdH (1; PNP = бис(2-диизопропилфосфино-4-метилфенил)амид). Для этого методами ИК- и ЯМР-спектроскопии исследовано его взаимодействие с кислотами Льюиса (BF3 · Et2O, B(C6F5)3) с привлечением квантово-химических расчетов (DFT/M06/def2-TZVP), а также использованы предложенные в литературе корреляции потенциалов электрохимического восстановления соответствующих катионов с термодинамической гидридностью. [(PNP)Pd(MeCN)][BF4] претерпевает необратимое двухэлектронное восстановление в ацетонитриле (\(E_{p}^{{{\text{red}}}}\) = –1.82 В). Для полученного потенциала корреляции дают завышенное значение гидридодонорной способности \(\Delta G_{{{{{\text{H}}}^{--}}}}^{^\circ }.\) Установлено, что реакция 1 с борсодержащими кислотами Льюиса неожиданно приводит к протонированию атома азота пинцетного лиганда примесью воды, а не к взаимодействию с гидридным лигандом. По данным DFT-расчетов, сродство к протону атома азота значительно выше, чем PdH, что обусловливает его более высокую активность в процессах протонирования.

作者简介

В. Куликова

Институт элементоорганических соединений им. А.Н. Несмеянова РАН

Email: nataliabelk@ineos.ac.ru
Россия, 119991, Москва, ул. Вавилова, 28

В. Киркина

Институт элементоорганических соединений им. А.Н. Несмеянова РАН

Email: nataliabelk@ineos.ac.ru
Россия, 119991, Москва, ул. Вавилова, 28

Е. Гуцул

Институт элементоорганических соединений им. А.Н. Несмеянова РАН

Email: nataliabelk@ineos.ac.ru
Россия, 119991, Москва, ул. Вавилова, 28

З. Гафуров

Институт органической и физической химии им. А.Е. Арбузова ФИЦ
“Казанский научный центр РАН”

Email: nataliabelk@ineos.ac.ru
Россия, 420088, Казань, ул. Арбузова, 8

А. Кагилев

Институт органической и физической химии им. А.Е. Арбузова ФИЦ
“Казанский научный центр РАН”; Химический институт им. А.М. Бутлерова, Казанский (Приволжский)
федеральный университет

Email: nataliabelk@ineos.ac.ru
Россия, 420088, Казань, ул. Арбузова, 8; Россия, 420008, Казань, ул. Кремлевская, 18

И. Сахапов

Институт органической и физической химии им. А.Е. Арбузова ФИЦ
“Казанский научный центр РАН”

Email: nataliabelk@ineos.ac.ru
Россия, 420088, Казань, ул. Арбузова, 8

Д. Яхваров

Институт органической и физической химии им. А.Е. Арбузова ФИЦ
“Казанский научный центр РАН”; Химический институт им. А.М. Бутлерова, Казанский (Приволжский)
федеральный университет

Email: nataliabelk@ineos.ac.ru
Россия, 420088, Казань, ул. Арбузова, 8; Россия, 420008, Казань, ул. Кремлевская, 18

О. Филиппов

Институт элементоорганических соединений им. А.Н. Несмеянова РАН

Email: nataliabelk@ineos.ac.ru
Россия, 119991, Москва, ул. Вавилова, 28

Е. Шубина

Институт элементоорганических соединений им. А.Н. Несмеянова РАН

Email: nataliabelk@ineos.ac.ru
Россия, 119991, Москва, ул. Вавилова, 28

Н. Белкова

Институт элементоорганических соединений им. А.Н. Несмеянова РАН

编辑信件的主要联系方式.
Email: nataliabelk@ineos.ac.ru
Россия, 119991, Москва, ул. Вавилова, 28

参考

  1. Wang D., Astruc D. // Chem. Rev. 2015. V. 115. P. 6621. https://doi.org/10.1021/acs.chemrev.5b00203
  2. Werkmeister S., Neumann J., Junge K. et al. // Chem. Eur. J. 2015. V. 21. P. 12226. https://doi.org/10.1002/chem.201500937
  3. Pospech J., Fleischer I., Franke R. et al. // Angew. Chem. Int. Ed. 2013. V. 52. P. 2852. https://doi.org/10.1002/anie.201208330
  4. Dutta A., Appel A.M., Shaw W.J. // Nature Rev. Chem. 2018. V. 2. P. 244. https://doi.org/10.1038/s41570-018-0032-8
  5. DuBois D.L. // Inorg. Chem. 2014. V. 53. P. 3935. https://doi.org/10.1021/ic4026969
  6. Waldie K.M., Ostericher A.L., Reineke M.H. et al. // ACS Catal. 2018. V. 8. P. 1313. https://doi.org/10.1021/acscatal.7b03396
  7. Stanbury M., Compain J.-D., Chardon-Noblat S. // Coord. Chem. Rev. 2018. V. 361. P. 120. https://doi.org/10.1016/j.ccr.2018.01.014
  8. Sordakis K., Tang C., Vogt L.K. et al. // Chem. Rev. 2018. V. 118. P. 372. https://doi.org/10.1021/acs.chemrev.7b00182
  9. Francke R., Schille B., Roemelt M. // Chem. Rev. 2018. V. 118. P. 4631. https://doi.org/10.1021/acs.chemrev.7b00459
  10. Buss J.A., VanderVelde D.G., Agapie T. // J. Am. Chem. Soc. 2018. V. 140. P. 10121. https://doi.org/10.1021/jacs.8b05874
  11. Artz J., Müller T.E., Thenert K. et al. // Chem. Rev. 2018. V. 118. P. 434. https://doi.org/10.1021/acs.chemrev.7b00435
  12. Filippov O.A., Golub I.E., Osipova E.S. et al. // Russ. Chem. Bull. 2014. V. 63. P. 2428. https://doi.org/10.1007/s11172-014-0758-5
  13. Wiedner E.S., Chambers M.B., Pitman C.L. et al. // Chem. Rev. 2016. V. 116. P. 8655. https://doi.org/10.1021/acs.chemrev.6b00168
  14. Golub I.E., Filippov O.A., Belkova N.V. et al. // J. Organomet. Chem. 2018. V. 865. P. 247. https://doi.org/10.1016/j.jorganchem.2018.03.020
  15. Khusnutdinova J.R., Milstein D. // Angew. Chem. Int. Ed. 2015. V. 54. P. 12236. https://doi.org/10.1002/anie.201503873
  16. Gunanathan C., Milstein D. // Acc. Chem. Res. 2011. V. 44. P. 588. https://doi.org/10.1021/ar2000265
  17. Cohen S., Bilyachenko A.N., Gelman D. // Eur. J. Inorg. Chem. 2019. V. 2019. P. 3203. https://doi.org/10.1002/ejic.201801486
  18. Yang W., Filonenko G.A., Pidko E.A. // Chem. Commun. 2023. V. 59. P. 1757. https://doi.org/10.1039/D2CC05625A
  19. Fan L., Foxman B.M., Ozerov O.V. // Organometallics. 2004. V. 23. P. 326. https://doi.org/10.1021/om034151x
  20. Kirkina V.A., Kulikova V.A., Gutsul E.I. et al. // Inorganics. 2023. V. 11. P. 212. https://doi.org/10.3390/inorganics11050212
  21. Tshepelevitsh S., Kütt A., Lõkov M. et al. // Eur. J. Org. Chem. 2019. V. 2019. P. 6735. https://doi.org/10.1002/ejoc.201900956
  22. Raamat E., Kaupmees K., Ovsjannikov G. et al. // J. Phys. Org. Chem. 2013. V. 26. P. 162. https://doi.org/10.1002/poc.2946
  23. Kuejtt A., Leito I., Kaljurand I. et al. // J. Org. Chem. 2006. V. 71. P. 2829. https://doi.org/10.1021/jo060031y
  24. Belkova N.V., Epstein L.M., Filippov O.A. et al. // Chem Rev. 2016. V. 116. P. 8545. https://doi.org/10.1021/acs.chemrev.6b00091
  25. Golub I.E., Filippov O.A., Kulikova V.A. et al. // Molecules. 2020. V. 25. P. 2920. https://doi.org/10.3390/molecules25122920
  26. Golub I.E., Filippov O.A., Belkova N.V. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 1639. https://doi.org/10.1134/S0036023621110073
  27. Frisch M.J., Trucks G.W., Schlegel H.B. et al. // Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2016.
  28. Zhao Y., Truhlar D.G. // Theor. Chem. Acc. 2008. V. 120. P. 215. https://doi.org/10.1007/s00214-007-0310-x
  29. Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. V. 7. P. 3297. https://doi.org/10.1039/B508541A
  30. Andrae D., Haussermann U., Dolg M. et al. // Theor. Chim. Acta 1990. V. 77. P. 123. https://doi.org/10.1007/bf01114537
  31. Marenich A.V., Cramer C.J., Truhlar D.G. // J. Phys. Chem. B. 2009. V. 113. P. 6378. https://doi.org/10.1021/jp810292n
  32. Alig L., Fritz M., Schneider S. // Chem. Rev. 2019. V. 119. P. 2681. https://doi.org/10.1021/acs.chemrev.8b00555
  33. Osipova E.S., Kovalenko S.A., Gulyaeva E.S. et al. // Molecules. 2023. V. 28. P. 3368. https://doi.org/10.3390/molecules28083368
  34. Osipova E.S., Gulyaeva E.S., Kireev N.V. et al. // Chem. Commun. 2022. V. 58. P. 5017. https://doi.org/10.1039/D2CC00999D
  35. Wamser C.A. // J. Am. Chem. Soc. 1951. V. 73. P. 409. https://doi.org/10.1021/ja01145a134
  36. Zhou J., Litle E.D., Gabbaï F.P. // Chem. Commun. 2021. V. 57. P. 10154. https://doi.org/10.1039/D1CC04105C
  37. Longobardi L.E., Mahdi T., Stephan D.W. // Dalton Trans. 2015. V. 44. P. 7114. https://doi.org/10.1039/C5DT00921A
  38. Gregor L.C., Chen C.-H., Fafard C.M. et al. // Dalton Trans. 2010. V. 39. P. 3195. https://doi.org/10.1039/B925265G
  39. Belkova N.V., Epstein L.M., Shubina E.S. // ARKIVOC. 2008. V. iv. P. 120. https://doi.org/10.3998/ark.5550190.0009.413
  40. Pankratov A.N., Shchavlev A.E. // J. Analyt. Chem. 2001. V. 56. P. 123. https://doi.org/10.1023/A:1009438517429
  41. Kovačević B., Maksić Z.B. // Org. Lett. 2001. V. 3. P. 1523. https://doi.org/10.1021/ol0158415
  42. Glasovac Z., Kovačević B. // Int. J. Mol. Sci. 2022. V. 23. P. 10576. https://doi.org/10.3390/ijms23181057

补充文件

附件文件
动作
1. JATS XML
2.

下载 (21KB)
3.

下载 (12KB)
4.

下载 (231KB)
5.

下载 (29KB)
6.

下载 (46KB)
7.

下载 (165KB)
8.

下载 (122KB)
9.

下载 (165KB)

版权所有 © В.А. Куликова, В.А. Киркина, Е.И. Гуцул, З.Н. Гафуров, А.А. Кагилев, И.Ф. Сахапов, Д.Г. Яхваров, О.А. Филиппов, Е.С. Шубина, Н.В. Белкова, 2023

##common.cookie##