Photoinduced Dynamics of Spin Centers in Carbon-Modified Titanium Dioxide Nanotubes

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Arrays of titanium dioxide (TiO2) nanotubes with different chemical compositions have been synthesized; their structural properties have been studied, and the characteristics of spin centers (defects) have been determined. All samples have appeared to contain carbon. It has been established that the main type of spin centers in TiO2 nanotubes are dangling carbon bonds, and their concentration correlates with the carbon content in the obtained structures. Under illumination, a reversible increase in the concentration of defects occurs, which is caused by their photoinduced recharging in the process of impurity absorption. This process is accompanied by an increase in the concentration of photoexcited electrons in the conduction band. The originality and novelty of the work are determined by the development of a method for controlling the density of defects and, accordingly, the concentration of photoinduced electrons by thermal treatment of samples under various conditions. The results open up new possibilities for the development of photocatalysts based on titanium dioxide nanotubes with a controlled electron concentration in the conduction band that function in the visible range of the spectrum.

作者简介

E. Kytina

Moscow State University

Email: wewillbe01@gmail.com
119991, Moscow, Russia

T. Savchuk

Moscow State University; National Research University of Electronic Technology

Email: wewillbe01@gmail.com
119991, Moscow, Russia; 124498, Zelenograd, Moscow, Russia

I. Gavrilin

National Research University of Electronic Technology

Email: wewillbe01@gmail.com
124498, Zelenograd, Moscow, Russia

E. Konstantinova

Moscow State University

编辑信件的主要联系方式.
Email: wewillbe01@gmail.com
119991, Moscow, Russia

参考

  1. Dongmei He, Liyong Du, Keyan Wang et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 1986. https://doi.org/10.1134/S0036023621130040
  2. Sadovnikov A.A., Nechaev E.G., Bel’tyukov A.N. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 460. https://doi.org/10.1134/S0036023621040197
  3. Dolganov A.V., Balandina A.V., Chugunov D.B. et al. // Russ. J. Gen. Chem. 2020. V. 90. P. 1229. https://doi.org/10.1134/S1070363220070099
  4. Jenny Schneider, Masaya Matsuoka, Masato Takeuchi et al. // Chem. Rev. 2014. V. 114. P. 9919. https://doi.org/10.1021/cr5001892
  5. Jingxiang Low, Jiaguo Yu, Mietek Jaroniec et al. // Adv. Mater. 2017. V. 29. № 20. P. 1601694. https://doi.org/10.1002/adma.201601694
  6. Martin Motola, Hanna Sopha, Miloš Krbal et al. // Electrochem. Commun. 2018. V. 97. № 1. P. 1. https://doi.org/10.1016/j.elecom.2018.09.015
  7. Кривобок В.С. // Письма в ЖЭТФ. 2020. Т. 112. № 8. С. 501. https://doi.org/10.31857/S1234567820200033
  8. Zubair M., Kim H., Razzaq A. et al. // J. CO2 Utiliz. 2018. V. 26. P. 70. https://doi.org/10.1016/j.jcou.2018.04.004
  9. Jaafar H., Ahmad Z.A., Ain M.F. et al. // Optik. 2017. V. 144. P. 91. https://doi.org/10.1016/j.ijleo.2017.06.097
  10. Zhao W., Liu S., Zhang S. et al. // Catal. Today. 2019. V. 337. P. 37. https://doi.org/10.1016/j.cattod.2019.04.024
  11. Tang T., Yin Z., Chen J. et al. // Chem. Eng. J. 2021. V. 417. P. 128058. https://doi.org/10.1016/j.cej.2020.128058
  12. Константинова Е.А., Миннеханов А.А., Кытина Е.В., Трусов Г.В. // Письма в ЖЭТФ. 2020. Т. 112. № 8. С. 562. https://doi.org/10.1134/S0021364020200060
  13. Wei Y., Huang Y., Fang Y. et al. // Mater. Res. Bull. 2019. V. 119. P. 110571. https://doi.org/10.1016/j.materresbull.2019.110571
  14. Xiao Y., Sun X., Li L. et al. // Chin. J. Catal. 2019. V. 40. № 5. P. 765. https://doi.org/10.1016/s1872-2067(19)63286-9
  15. So S., Riboni F., Hwang I. et al. // Electrochim. Acta. 2017. V. 231. P. 721. https://doi.org/10.1016/j.electacta.2017.02.094
  16. Motola M., Čaplovičová M., Krbal M. et al. // Electrochim. Acta. 2020. V. 331. P. 135374. https://doi.org/10.1016/j.electacta.2019.135374
  17. Kar P., Zeng S., Zhang Y. et al. // Appl. Catal. B: Environmental. 2019. V. 243. P. 522. https://doi.org/10.1016/j.apcatb.2018.08.002
  18. Savchuk T., Gavrilin I., Konstantinova E. et al. // Nanotechnology. 2021. V. 33. P. 055706. https://doi.org/10.1088/1361-6528/ac317e
  19. Gavrilin I., Dronov A., Volkov R. et al. // Appl. Surf. Sci. 2020. V. 516. P. 146120. https://doi.org/10.1016/j.apsusc.2020.146120
  20. Hu L., Huo K., Chen R. et al. // Anal. Chem. 2021. V. 83. P. 8138. https://doi.org/10.1021/ac201639m
  21. Zhi-Da Gao, Xu Zhu, Ya-Hang Li et al. // Chem. Commun. 2015. V. 51. P. 7614. https://doi.org/10.1039/c5cc00728c
  22. Yan-Yan Song, Ya-Hang Li, Jing Guo et al. // J. Mater. Chem. A. 2015. V. 3. P. 23754. https://doi.org/10.1039/c5ta05691h
  23. Zhao H., Pan F., Li Y. et al. // J. Materiomics. 2017. V. 3. P. 17. https://doi.org/10.1016/j.jmat.2016.12.001
  24. Wedland W., Hecht H. Reflectance Spectroscopy. N.Y.: Interscience, 1966.
  25. Minnekhanov A.A., Deygen D.M., Konstantinova E.A. et al. // Nanoscale Res. Lett. 2012. V. 7. P. 333. https://doi.org/10.1186/1556-276X-7-333

补充文件

附件文件
动作
1. JATS XML
2.

下载 (943KB)
3.

下载 (78KB)
4.

下载 (43KB)
5.

下载 (53KB)
6.

下载 (86KB)

版权所有 © Е.В. Кытина, Т.П. Савчук, И.М. Гаврилин, Е.А. Константинова, 2023

##common.cookie##