Фотоиндуцированная динамика спиновых центров в нанотрубках диоксида титана, модифицированных углеродом

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Синтезированы массивы нанотрубок диоксида титана (TiO2) с различным химическим составом, изучены их структурные свойства и определены характеристики спиновых центров (дефектов). Обнаружено, что все образцы имеют в своем составе углерод. Установлено, что основным типом спиновых центров в нанотрубках TiO2 являются оборванные связи углерода, концентрация которых коррелирует с содержанием углерода в полученных структурах. Под действием освещения происходит обратимый рост концентрации дефектов, обусловленный их фотоиндуцированными реакциями перезарядки в процессе примесного поглощения. Указанный процесс сопровождается увеличением концентрации фотовозбужденных электронов в зоне проводимости. Оригинальность и новизна работы определяются разработкой способа контроля плотности дефектов и, соответственно, концентрации фотоиндуцированных электронов путем термической обработки образцов в различных условиях. Полученные результаты открывают новые возможности для разработки функционирующих в видимом диапазоне спектра фотокатализаторов на основе нанотрубок диоксида титана с управляемой концентрацией электронов в зоне проводимости.

Об авторах

Е. В. Кытина

Московский государственный университет им. М.В. Ломоносова

Email: wewillbe01@gmail.com
Россия, 119991, Москва

Т. П. Савчук

Московский государственный университет им. М.В. Ломоносова; Национальный исследовательский университет электронной техники – МИЭТ

Email: wewillbe01@gmail.com
Россия, 119991, Москва; Россия, 124498, Зеленоград, Москва

И. М. Гаврилин

Национальный исследовательский университет электронной техники – МИЭТ

Email: wewillbe01@gmail.com
Россия, 124498, Зеленоград, Москва

Е. А. Константинова

Московский государственный университет им. М.В. Ломоносова

Автор, ответственный за переписку.
Email: wewillbe01@gmail.com
Россия, 119991, Москва

Список литературы

  1. Dongmei He, Liyong Du, Keyan Wang et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 1986. https://doi.org/10.1134/S0036023621130040
  2. Sadovnikov A.A., Nechaev E.G., Bel’tyukov A.N. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 460. https://doi.org/10.1134/S0036023621040197
  3. Dolganov A.V., Balandina A.V., Chugunov D.B. et al. // Russ. J. Gen. Chem. 2020. V. 90. P. 1229. https://doi.org/10.1134/S1070363220070099
  4. Jenny Schneider, Masaya Matsuoka, Masato Takeuchi et al. // Chem. Rev. 2014. V. 114. P. 9919. https://doi.org/10.1021/cr5001892
  5. Jingxiang Low, Jiaguo Yu, Mietek Jaroniec et al. // Adv. Mater. 2017. V. 29. № 20. P. 1601694. https://doi.org/10.1002/adma.201601694
  6. Martin Motola, Hanna Sopha, Miloš Krbal et al. // Electrochem. Commun. 2018. V. 97. № 1. P. 1. https://doi.org/10.1016/j.elecom.2018.09.015
  7. Кривобок В.С. // Письма в ЖЭТФ. 2020. Т. 112. № 8. С. 501. https://doi.org/10.31857/S1234567820200033
  8. Zubair M., Kim H., Razzaq A. et al. // J. CO2 Utiliz. 2018. V. 26. P. 70. https://doi.org/10.1016/j.jcou.2018.04.004
  9. Jaafar H., Ahmad Z.A., Ain M.F. et al. // Optik. 2017. V. 144. P. 91. https://doi.org/10.1016/j.ijleo.2017.06.097
  10. Zhao W., Liu S., Zhang S. et al. // Catal. Today. 2019. V. 337. P. 37. https://doi.org/10.1016/j.cattod.2019.04.024
  11. Tang T., Yin Z., Chen J. et al. // Chem. Eng. J. 2021. V. 417. P. 128058. https://doi.org/10.1016/j.cej.2020.128058
  12. Константинова Е.А., Миннеханов А.А., Кытина Е.В., Трусов Г.В. // Письма в ЖЭТФ. 2020. Т. 112. № 8. С. 562. https://doi.org/10.1134/S0021364020200060
  13. Wei Y., Huang Y., Fang Y. et al. // Mater. Res. Bull. 2019. V. 119. P. 110571. https://doi.org/10.1016/j.materresbull.2019.110571
  14. Xiao Y., Sun X., Li L. et al. // Chin. J. Catal. 2019. V. 40. № 5. P. 765. https://doi.org/10.1016/s1872-2067(19)63286-9
  15. So S., Riboni F., Hwang I. et al. // Electrochim. Acta. 2017. V. 231. P. 721. https://doi.org/10.1016/j.electacta.2017.02.094
  16. Motola M., Čaplovičová M., Krbal M. et al. // Electrochim. Acta. 2020. V. 331. P. 135374. https://doi.org/10.1016/j.electacta.2019.135374
  17. Kar P., Zeng S., Zhang Y. et al. // Appl. Catal. B: Environmental. 2019. V. 243. P. 522. https://doi.org/10.1016/j.apcatb.2018.08.002
  18. Savchuk T., Gavrilin I., Konstantinova E. et al. // Nanotechnology. 2021. V. 33. P. 055706. https://doi.org/10.1088/1361-6528/ac317e
  19. Gavrilin I., Dronov A., Volkov R. et al. // Appl. Surf. Sci. 2020. V. 516. P. 146120. https://doi.org/10.1016/j.apsusc.2020.146120
  20. Hu L., Huo K., Chen R. et al. // Anal. Chem. 2021. V. 83. P. 8138. https://doi.org/10.1021/ac201639m
  21. Zhi-Da Gao, Xu Zhu, Ya-Hang Li et al. // Chem. Commun. 2015. V. 51. P. 7614. https://doi.org/10.1039/c5cc00728c
  22. Yan-Yan Song, Ya-Hang Li, Jing Guo et al. // J. Mater. Chem. A. 2015. V. 3. P. 23754. https://doi.org/10.1039/c5ta05691h
  23. Zhao H., Pan F., Li Y. et al. // J. Materiomics. 2017. V. 3. P. 17. https://doi.org/10.1016/j.jmat.2016.12.001
  24. Wedland W., Hecht H. Reflectance Spectroscopy. N.Y.: Interscience, 1966.
  25. Minnekhanov A.A., Deygen D.M., Konstantinova E.A. et al. // Nanoscale Res. Lett. 2012. V. 7. P. 333. https://doi.org/10.1186/1556-276X-7-333

Дополнительные файлы


© Е.В. Кытина, Т.П. Савчук, И.М. Гаврилин, Е.А. Константинова, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах