Иодидные комплексы Cd(II) С 2-галогензамещенными пиридинами: структура и особенности галогенной связи в твердом теле

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Взаимодействием иодида кадмия(II) с 2-хлор- (2-ClPy), 2-бром- (2-BrPy), 2-иод- (2-IPy) и 2-бром-5-метилпиридином (2-Br-5-MePy) получены гетеролептические нейтральные комплексы {[LCdI2]}n, где L = 2-ClPy (1), 2-BrPy (2), и [L2CdI2], где L = 2-IPy (3), 2-Br-5-MePy (4), строение которых установлено методом рентгеноструктурного анализа. В структурах 3 и 4 присутствуют галогенные связи, природа которых изучена с использованием квантово-химических расчетов.

Полный текст

Доступ закрыт

Об авторах

С. А. Адонин

Институт неорганической химии им. А.В. Николаева СО РАН; Иркутский институт химии им. А.Е. Фаворского СО РАН

Автор, ответственный за переписку.
Email: adonin@niic.nsc.ru
Россия, пр-т Академика Лаврентьева, 3, Новосибирск, 630090; ул. Фаворского, 1, Иркутск, 664033

А. С. Новиков

Санкт-Петербургский государственный университет

Email: adonin@niic.nsc.ru
Россия, Университетская наб., 7, Санкт-Петербург, 199034

Список литературы

  1. Desiraju G.R., Ho P.S., Kloo L. et al. // Pure Appl. Chem. 2013. V. 85. № 8. P. 1711.
  2. Bartashevich E.V., Sobalev S.A., Matveychuk Y.V. et al. // J. Struct. Chem. 2021. V. 62. № 10. P. 1607.
  3. Novikov A.S., Gushchin A.L. // J. Struct. Chem. 2021. V. 62. № 9. P. 1325.
  4. Bartashevich E.V., Grigoreva E.A., Yushina I.D. et al. // Russ. Chem. Bull. 2017. V. 66. № 8. P. 1345.
  5. Bol’shakov O.I., Yushina I.D., Stash A.I. et al. // Struct. Chem. 2020. V. 31. № 5. P. 1729.
  6. Đunović A.B., Veljković D.Ž. // CrystEngComm. 2021. V. 23. № 39. P. 6915.
  7. Lazić A., Trišović N., Radovanović L. et al. // CrystEngComm. 2017. V. 19. № 3. P. 469.
  8. Moradkhani M., Naghipour A., Abbasi Tyula Y. // Comput. Theor. Chem. 2023. V. 1223.
  9. Katlenok E.A., Haukka M., Levin O.V. et al. // Chem. A Eur. J. 2020. V. 26. № 34. P. 7692.
  10. Rozhkov A.V., Novikov A.S., Ivanov D.M. et al. // Cryst. Growth Des. 2018. V. 18. № 6. P. 3626.
  11. Kryukova M.A., Sapegin A.V., Novikov A.S. et al. // Crystals. 2020. V. 10. № 5.
  12. Eliseeva A.A., Ivanov D.M., Novikov A.S. et al. // CrystEngComm. 2019. V. 21. № 4. P. 616.
  13. Bokach N.A., Suslonov V.V., Eliseeva A.A. et al. // CrystEngComm. 2020. V. 22. № 24. P. 4180.
  14. Eliseeva A.A., Ivanov D.M., Rozhkov A.V. et al. // JACS Au. 2021. V. 1. № 3. P. 354.
  15. Suslonov V.V., Soldatova N.S., Ivanov D.M. et al. // Cryst. Growth Des. 2021. V. 21. № 9. P. 5360.
  16. Soldatova N.S., Suslonov V.V., Kissler T.Y. et al. // Crystals. 2020. V. 10. № 3.
  17. Aliyarova I.S., Ivanov D.M., Soldatova N.S. et al. // Cryst. Growth Des. 2021. V. 21. № 2. P. 1136.
  18. Soldatova N.S., Postnikov P.S., Suslonov V.V. et al. // Org. Chem. Front. 2020. V. 7. № 16. P. 2230.
  19. Torubaev Y.V., Skabitskiy I.V., Pavlova A.V. et al. // New J. Chem. 2017. V. 41. № 9. P. 3606.
  20. Shestimerova T.A., Yelavik N.A., Mironov A.V. et al. // Inorg. Chem. 2018. V. 57. № 7. P. 4077.
  21. Eich A., Köppe R., Roesky P.W. et al. // Eur. J. Inorg. Chem. 2019. V. 2019. № 9. P. 1292.
  22. Bykov A.V., Shestimerova T.A., Bykov M.A. et al. // Int. J. Mol. Sci. 2023. V. 24. № 3. P. 2201.
  23. Shestimerova T.A., Golubev N.A., Yelavik N.A. et al. // Cryst. Growth Des. 2018. V. 18. № 4. P. 2572.
  24. Hu C., Li Q., Englert U. // CrystEngComm. 2003. V. 5. № 94. P. 519.
  25. Wang A., Englert U. // Acta Crystallogr., Sect. C: Struct. Chem. 2017. V. 73. № 10. P. 803.
  26. Hu C., Kalf I., Englert U. // CrystEngComm. 2007. V. 9. № 7. P. 603.
  27. Zordan F., Brammer L. // Cryst. Growth Des. 2006. V. 6. № 6. P. 1374.
  28. Kokina T.E., Agafontsev A.M., Sizintseva K.D. et al. // J. Struct. Chem. 2023. V. 64. № 12. P. 2311.
  29. Dege N. // J. Struct. Chem. 2023. V. 64. № 4. P. 563.
  30. Zvezdina S.V., Chizhova N.V., Mamardashvili N.Z. // Russ. J. Org. Chem. 2023. V. 59. № 4. P. 597.
  31. Keypour H., Abdollahi-Moghadam M., Zeynali H. et al. // J. Mol. Struct. 2024. V. 1295.
  32. Hajari S., Keypour H., Rezaei M.T. et al. // J. Mol. Struct. 2022. V. 1251.
  33. Rezaei M.T., Keypour H., Bayat M. et al. // J. Mol. Struct. 2021. V. 1224. № 129119.
  34. Keypour H., Azizi E., Mahmoudabadi M. et al. // Transition Met. Chem. 2020. V. 45. № 4. P. 227.
  35. Aidi M., Keypour H., Shooshtari A. et al. // Inorg. Chim. Acta. 2019. V. 490. P. 294.
  36. Burlak P.V., Kovalenko K.A., Samsonenko D.G. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 8. P. 504.
  37. Nikiforova S.E., Kubasov A.S., Son A.G. et al. // Inorg. Chim. Acta. 2023. V. 557. № 121654.
  38. Sheldrick G.M. // Acta Crystallogr., Sect. A: Found. Adv. 2015. V. 71. № 1. P. 3.
  39. Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. № 1. P. 3.
  40. Hübschle C.B., Sheldrick G.M., Dittrich B. // J. Appl. Crystallogr. 2011. V. 44. № 6. P. 1281.
  41. Vershinin M.A., Rakhmanova M.I., Novikov A.S. et al. // Molecules. 2021. V. 26. № 11.
  42. Bondi A. // J. Phys. Chem. 1966. V. 70. № 9. P. 3006.
  43. Cavallo G., Metrangolo P., Milani R. et al. // Chem. Rev. 2016. V. 116. № 4. P. 2478.
  44. Chai J. Da, Head-Gordon M. // Phys. Chem. Chem. Phys. 2008. V. 10. № 44. P. 6615.
  45. Barros C.L., de Oliveira P.J.P., Jorge F.E. et al. // Mol. Phys. 2010. V. 108. № 15. P. 1965.
  46. Bader R.F.W. // Chem. Rev. 1991. V. 91. № 5. P. 893.
  47. Lu T., Chen F. // J. Comput. Chem. 2012. V. 33. № 5. P. 580.
  48. Anisimova T.B., Kinzhalov M.A., Guedes Da Silva M.F.C. et al. // New J. Chem. 2017. V. 41. № 9. P. 3246.
  49. Rozhkov A.V., Ivanov D.M., Novikov A.S. et al. // CrystEngComm. 2020. V. 22. № 3. P. 554.
  50. Melekhova A.A., Novikov A.S., Panikorovskii Т. L. et al. // New J. Chem. 2017. V. 41. № 23. P. 14557.
  51. Johnson E.R., Keinan S., Mori-Sánchez P. et al. // J.Am. Chem. Soc. 2010. V. 132. № 18. P. 6498.
  52. Bartashevich E.V., Tsirelson V.G. // Russ. Chem. Rev. 2014. V. 83. № 12. P. 1181.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Фрагмент полимерной цепочки {[(2-ClPy)CdI2]}n в структуре 1. Здесь и на рис. 2, 3 Cd показан черным цветом, C и H – серым, I – фиолетовым, N – синим, Cl – светло-зеленым.

Скачать (212KB)
3. Рис. 2. Строение соединения 3.

Скачать (148KB)
4. Рис. 3. Галогенные связи в структуре 3.

Скачать (180KB)
5. Рис. 4. Диаграмма контурных линий распределения лапласиана электронной плотности ∇2ρ(r), связевые пути и поверхности нулевого потока (а), изображения распределения функции локализации электронов (ELF, б) и приведенного градиента электронной плотности (RDG, в), соответствующие нековалентным взаимодействиям I···I в соединении 3. Критические точки связей (3, –1) показаны синим цветом, критические точки ядер (3, –3) – светло-коричневым цветом, критические точки цикла (3, +1) – оранжевым цветом. Единицы измерения длины – Å, шкала значений ELF и RDG представлена в атомных единицах.

Скачать (660KB)
6. Рис. 5. Диаграмма контурных линий распределения лапласиана электронной плотности ∇2ρ(r), связевые пути и поверхности нулевого потока (а), изображения распределения функции локализации электронов (ELF, б) и приведенного градиента электронной плотности (RDG, в), соответствующие нековалентным взаимодействиям I···I в соединении 4. Критические точки связей (3, –1) показаны синим цветом, критические точки ядер (3, –3) – светло-коричневым цветом, критические точки цикла (3, +1) – оранжевым цветом. Единицы измерения длины – Å, шкала значений ELF и RDG представлена в атомных единицах.

Скачать (605KB)
7. Рис. 6. Визуализация галогенных связей I···I и Br···I в кристаллах 3 (а) и 4 (б) в рамках формализма анализа нековалентных взаимодействий в модельных супрамолекулярных ассоциатах (NCI analysis).

Скачать (378KB)

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».