Термодинамическое моделирование процесса CVD в системе Ni–Si–C–H

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Благодаря уникальным свойствам бескислородная керамика является перспективной для применения в различных отраслях техники. Включение металлов или их соединений в эту керамику существенно расширяет возможности ее применения, поэтому активно разрабатываются способы синтеза таких композитов. Одним из способов получения таких пленок является осаждение из газовой фазы. Термодинамическое моделирование позволяет подобрать условия для этого процесса. В работе проведено термодинамическое моделирование CVD-процесса в системе Ni–Si–C–H, где прекурсорами были никелоцен и силан. Результаты работы могут быть полезны для разработки способов получения пленочных материалов на основе SiC и никельсодержащих фаз.

Полный текст

Доступ закрыт

Об авторах

В. А. Шестаков

Институт неорганической химии им. А.В. Николаева СО РАН

Автор, ответственный за переписку.
Email: vsh@niic.nsc.ru
Россия, пр-т Академика Лаврентьева, 3, Новосибирск, 630090

М. Л. Косинов

Институт неорганической химии им. А.В. Николаева СО РАН

Email: vsh@niic.nsc.ru
Россия, пр-т Академика Лаврентьева, 3, Новосибирск, 630090

Список литературы

  1. Шестаков А.М. // Тр. ВИАМ, 2021. Ч. 1. № 8 (102). C. 21. https://doi.org/10.18577/2307-6046-2021-0-8-21-33
  2. Hye-Rim Jeong, Tae-Hwan Huh, Byung Hyo Kim, Young-Je Kwark // Ceram. Int. 2022. V. 48. № 12. P. 16576. https://doi.org/10.1016/j.ceramint.2022.02.202
  3. Idesaki A., Colombo P. // Adv. Eng. Mater. 2012. V. 14. P. 1116. https://doi.org/10.1002/adem.201100354.
  4. Friebe L., Liu K., Obermeier B., Petrov S. et al. // Chem. Mater. 2007. V. 19. P. 2630. https://doi.org/10.1021/cm062470j
  5. Bazarjani M.S., Kleebe H.-J., Müller M.M. et al. // Chem. Mater. 2011. V. 23. Р. 4112. https://doi.org/10.1021/cm200589n
  6. Liu Y., Feng Y., Gong H. et al. // J. Alloys Compd. 2018. V. 749. P. 620. https://doi.org/10.1016/j.jallcom.2018.03.346
  7. Станкевич Е.В., Тявловская Е.А. // Журн. прикл. спектроскопии. 2010. Т. 77. № 5. С. 737.
  8. Fanping Meng, Bo Wang, Fangfang Ge, Feng Huang // Surf. Coat. Technol. 2012. V. 213. P. 77. https://doi.org/10.1016/j.surfcoat.2012.10.020
  9. Asakuma N., Tada S., Kawaguchi E. et al. // Nanomater. 2022. V. 12. P. 1644. https://doi.org/10.3390/nano12101644
  10. Yu Liu, Xiao Lin, Hongyu Gong et al. // J. Alloys Compd. 2019. V. 771. P. 356. https://doi.org/10.1016/j.jallcom.2018.08.283
  11. Yu Liu, Xiao Lin, Hongyu Gong et al. // J. Alloys Compd. 2018. V. 749. P. 620. https://doi.org/10.1016/j.jallcom.2018.03.346
  12. Hahn G., Ewert J.-K., Denner C. et al. // Chem. Cat. Chem. 2016. V. 8. P. 2461. http://dx.doi.org/10.1002/cctc.201600391
  13. Xiaofei Zhang, Lixin Chen, Lala Meng. et al. // Ceram. Int. 2014. V. 40. P. 6937. https://doi.org/10.1016/j.ceramint.2013.12.017
  14. Friebe L., Liu K., Obermeier B. et al. // Chem. Mater. 2007. V. 19. P. 2630. https://doi.org/10.1021/cm062470j
  15. Sheikh Aamir Farooq, Ankush Raina, Sanjay Mohan. et al. // Nanomater. 2022. V. 12. P. 1323. https://doi.org/10.3390/nano12081323
  16. Sheikh Aamir Farooq, Ankush Raina, Sanjay Mohan et al. // Nanomater. 2022. V. 12. P. 1323. https://doi.org/10.3390/nano12081323
  17. Hwang Seong-Don, Remmes N.B., Dowben P.A., McIlroy D.N. // J. Vac. Sci. Technol. 1996. V. B14. P. 2957. https://doi.org/10.1116/1.588942
  18. Fanping Meng, Bo Wang, Fangfang Ge, Feng Huang // Surf. Coat. Technol. 2012. V. 213. P. 77. https://doi.org/10.1016/j.surfcoat.2012.10.020
  19. Шестаков В.А., Косяков В.И., Косинова М.Л. // Журн. неорган. химии. 2020. Т. 65. C. 829. [Shestakov V.A., Kosyakov V.I., Kosinova M.L. // Russ. J. Inorg. Chem. 2020. V. 65. P. 898. https://doi.org/10.7868/S0044457X1806017X]
  20. Шестаков В.А., Косинова М.Л. // Изв. АН. Сер. хим. 2021. № 2. С. 283. [Shestakov V.A., Kosinova M.L. // Russ. Chem. Bull., Int. Ed. 2021. V. 70. № 2. P. 283. https://doi.org/10.1007/s11172-021-3083-9]
  21. Шестаков В.А., Косинова М.Л. // Журн. неорган. химии. 2021. Т. 66. № 11. С. 1585. [Shestakov V.A., Kosinova M.L. // Russ. J. Inorg. Chem. 2021. V. 66. P. 1703. https://doi.org/10.31857/S0044457X21110155]
  22. Шестаков В.А., Яковкина Л.В., Кичай В.Н. // Журн. неорг. химии. 2022. Т. 67. № 12. С. 1746. https://doi.org/10.31857/S0044457X22600608 [Shestakov V.A., Yakovkina L.V., Kichay V.N. // Russ. J. Inorg. Chem. 2022. V. 67. № 12. P. 1956. https://doi.org/10.1134/S0036023622601179]
  23. Кузнецов Ф.А., Буждан Я.М., Коковин Г.А. // Изв. СО АН СССР. Сер. хим. наук. 1975. № 2. Вып. 1. С. 24.
  24. Kuznetsov F.A., Titov V.A. Proc. Int. Symp. on Advanced Materials. September 24–30. Jpn., 1995. P. 16.
  25. Термодинамические свойства индивидуальных веществ / Под ред. Глушко В.П. и др. М.: Наука, 1988. Т. 3. Кн. 2. 395 с.
  26. Barin I. Termodynamical data of pure substances. N.Y., 1989. 1739 p.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. CVD-диаграмма системы Ni(C5H5)2–9SiH4–nH2 при Р = 0.05 Торр. Штриховой линией отмечена температура плавления NiSi (992С).

Скачать (64KB)
3. Рис. 2. CVD-диаграмма системы Ni(C5H5)2–mSiH4–50H2, m = [SiH4]/[Ni(C5H5)2].

Скачать (87KB)
4. Рис. 3. Зависимость величины x, отвечающей отношению суммы молей SiC и Ni7Si13 к сумме молей всех фаз комплекса, от параметра m при 700С.

Скачать (135KB)

© Российская академия наук, 2024

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах