Синтез двумерных наноструктур NiO при комбинации программируемого химического осаждения и гидротермальной обработки

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Изучен процесс синтеза двумерных наноструктур NiO при комбинации программируемого химического осаждения и гидротермальной обработки формируемых полупродуктов в среде дистиллированной воды и водного раствора гидрата аммиака. С помощью синхронного термического анализа была определена зависимость термической устойчивости и сорбционной способности частиц полупродуктов от условий их гидротермальной обработки, а также при изменении состава дисперсионной среды. Результаты ИК-спектроскопии и рентгенофазового анализа позволили определить особенности кристаллической структуры и набор функциональных групп для полупродуктов и формируемых на их основе нанопорошков NiO. Так, в зависимости от условий гидротермальной обработки средний размер областей когерентного рассеяния получаемых порошков оксида никеля варьируется от 4.0 ± 0.5 до 8.6 ± 0.8 нм. С помощью растровой и просвечивающей электронной микроскопии было показано, что в зависимости от условий синтеза можно контролировать процесс рекристаллизации наночастиц NiO с образованием двумерных наноструктур различной формы и необходимого размера – от нанолистов хаотичной геометрии до плоских гексагонов с варьируемым диаметром. Благодаря анизотропной микроструктуре получаемых наноматериалов они могут быть эффективно использованы при изготовлении функциональных компонентов современных устройств альтернативной энергетики (электродов суперконденсаторов, твердооксидных топливных элементов и др.), в том числе с применением печатных технологий.

Об авторах

Т. Л. Симоненко

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: egorova.offver@gmail.com
Россия, 119991, Москва, Ленинский пр-т, 31

Д. А. Дудорова

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: egorova.offver@gmail.com
Россия, 119991, Москва, Ленинский пр-т, 31

Н. П. Симоненко

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: egorova.offver@gmail.com
Россия, 119991, Москва, Ленинский пр-т, 31

Е. П. Симоненко

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: egorova.offver@gmail.com
Россия, 119991, Москва, Ленинский пр-т, 31

Н. Т. Кузнецов

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Автор, ответственный за переписку.
Email: egorova.offver@gmail.com
Россия, 119991, Москва, Ленинский пр-т, 31

Список литературы

  1. Yaqoot M., Diwan P., Kandpal T.C. // Renew. Sustain. Energy Rev. 2016. V. 58. P. 477. https://doi.org/10.1016/j.rser.2015.12.224
  2. Beccarello M., Di Foggia G. // Energies. 2023. V. 16. № 3. P. 1345. https://doi.org/10.3390/en16031345
  3. Gerard O., Numan A., Krishnan S. et al. // J. Energy Storage. 2022. V. 50. P. 104283. https://doi.org/10.1016/j.est.2022.104283
  4. Sun Y., Chong W.G. // Mater. Horizons. 2023. V. 10. № 7. P. 2373. https://doi.org/10.1039/D3MH00045A
  5. Nehate S.D., Sundaresh S., Saikumar A.K. et al. // ECS J. Solid State Sci. Technol. 2022. V. 11. № 6. P. 063015. https://doi.org/10.1149/2162-8777/ac774b
  6. Yu F., Huang T., Zhang P. et al. // Energy Storage Mater. 2019. V. 22. P. 235. https://doi.org/10.1016/j.ensm.2019.07.023
  7. Ramkumar R., Dhakal G., Shim J.-J. et al. // Nanomaterials. 2022. V. 12. № 21. P. 3813. https://doi.org/10.3390/nano12213813
  8. Yu M., Wang W., Li C. et al. // NPG Asia Mater. 2014. V. 6. № 9. P. E129. https://doi.org/10.1038/am.2014.78
  9. Ortiz M.G., Visintin A., Real S.G. // J. Electroanal. Chem. 2021. V. 883. P. 114875. https://doi.org/10.1016/j.jelechem.2020.114875
  10. Khalil A., Lalia B.S., Hashaikeh R. // J. Mater. Sci. 2016. V. 51. № 14. P. 6624. https://doi.org/10.1007/s10853-016-9946-z
  11. Arya S., Verma S. // Nickel-Metal Hydride (Ni-MH) Batteries. Wiley, 2020. P. 131. https://doi.org/10.1002/9781119714774.ch8
  12. Mozaffari S.A., Mahmoudi Najafi S.H., Norouzi Z. // Electrochim. Acta. 2021. V. 368. P. 137633. https://doi.org/10.1016/j.electacta.2020.137633
  13. Singh M., Zappa D., Comini E. // Mater. Adv. 2022. V. 3. № 14. P. 5922. https://doi.org/10.1039/D2MA00317A
  14. Mohd Abd Fatah A.F., Rosli A.Z., Mohamad A.A. et al. // Energies. 2022. V. 15. № 14. P. 5188. https://doi.org/10.3390/en15145188
  15. Bonomo M. // J. Nanoparticle Res. 2018. V. 20. № 8. P. 222. https://doi.org/10.1007/s11051-018-4327-y
  16. Nie C., Zeng W., Jing X. et al. // J. Mater. Sci. Mater. Electron. 2018. V. 29. № 9. P. 7480. https://doi.org/10.1007/s10854-018-8739-3
  17. Qi X., Zheng W., Li X. et al. // Sci. Rep. 2016. V. 6. № 1. P. 33241. https://doi.org/10.1038/srep33241
  18. Yan X., Tong X., Wang J. et al. // Mater. Lett. 2014. V. 136. P. 74. https://doi.org/10.1016/j.matlet.2014.07.183
  19. Pang H., Lu Q., Li Y. et al. // Chem. Commun. 2009. № 48. P. 7542. https://doi.org/10.1039/b914898a
  20. Sun W., Xiao L., Wu X. // J. Alloys Compd. 2019. V. 772. P. 465. https://doi.org/10.1016/j.jallcom.2018.09.185
  21. Hou G., Du Y., Cheng B. et al. // ACS Appl. Nano Mater. 2018. V. 1. № 11. P. 5981. https://doi.org/10.1021/acsanm.8b01398
  22. Tong G., Hu Q., Wu W. et al. // J. Mater. Chem. 2012. V. 22. № 34. P. 17494. https://doi.org/10.1039/c2jm31790g
  23. Yang Z.K., Song L.X., Xu R.R. et al. // CrystEngComm. 2014. V. 16. № 38. P. 9083. https://doi.org/10.1039/C4CE00998C
  24. Liu C., Li C., Ahmed K. et al. // Sci. Rep. 2016. V. 6. № 1. P. 29183. https://doi.org/10.1038/srep29183
  25. Pang H., Lu Q., Zhang Y. et al. // Nanoscale. 2010. V. 2. № 6. P. 920. https://doi.org/10.1039/c0nr00027b
  26. Kavitha T., Yuvaraj H. // J. Mater. Chem. 2011. V. 21. № 39. P. 15686. https://doi.org/10.1039/c1jm13278d
  27. Bhosale M.A., Bhanage B.M. // Adv. Powder Technol. 2015. V. 26. № 2. P. 422. https://doi.org/10.1016/j.apt.2014.11.015
  28. Zhu Y., Cao C., Tao S. et al. // Sci. Rep. 2014. V. 4. № 1. P. 5787. https://doi.org/10.1038/srep05787
  29. Nakate U.T., Lee G.H., Ahmad R. et al. // Ceram. Int. 2018. V. 44. № 13. P. 15721. https://doi.org/10.1016/j.ceramint.2018.05.246
  30. Taşköprü T., Zor M., Turan E. // Mater. Res. Bull. 2015. V. 70. P. 633. https://doi.org/10.1016/j.materresbull.2015.05.032
  31. Bose P., Ghosh S., Basak S. et al. // J. Asian Ceram. Soc. 2016. V. 4. № 1. P. 1. https://doi.org/10.1016/j.jascer.2016.01.006
  32. Wu J., Yin W.-J., Liu W.-W. et al. // J. Mater. Chem. A. 2016. V. 4. № 28. P. 10940. https://doi.org/10.1039/C6TA03137D
  33. Kumar V.M., Polaki S.R., Krishnan R. et al. // J. Alloys Compd. 2023. V. 931. P. 167420. https://doi.org/10.1016/j.jallcom.2022.167420
  34. Tu R., Leng K., Song C. et al. // RSC Adv. 2023. V. 13. № 28. P. 19585. https://doi.org/10.1039/D3RA02544F
  35. Lin J., Jia H., Liang H. et al. // Adv. Sci. 2018. V. 5. № 3. P. 1700687. https://doi.org/10.1002/advs.201700687
  36. Lin L., Liu T., Miao B. et al. // Mater. Lett. 2013. V. 102–103. P. 43. https://doi.org/10.1016/j.matlet.2013.03.103
  37. Xiao H., Yao S., Liu H. et al. // Prog. Nat. Sci. Mater. Int. 2016. V. 26. № 3. P. 271. https://doi.org/10.1016/j.pnsc.2016.05.007
  38. Simonenko T.L., Bocharova V.A., Gorobtsov P.Y. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 9. P. 1292. https://doi.org/10.1134/S0036023620090193
  39. Simonenko T.L., Bocharova V.A., Simonenko N.P. // Russ. J. Inorg. Chem. 2021. V. 66. № 11. P. 1633. https://doi.org/10.1134/S0036023621110176
  40. Simonenko T.L., Bocharova V.A., Simonenko N.P. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 12. P. 1779. https://doi.org/10.1134/S0036023621120160
  41. Real S.G., Ortiz M.G., Castro E.B. // J. Solid State Electrochem. 2017. V. 21. № 1. P. 233. https://doi.org/10.1007/s10008-016-3355-8
  42. Veseem M., Umar A.H. // Met. Oxide Nanostructures Their Appl. 2010. P. 1.
  43. Simonenko T.L., Simonenko N.P., Mokrushin A.S. et al. // Chemosensors. 2023. V. 11. № 2. P. 138. https://doi.org/10.3390/chemosensors11020138
  44. Begum S., Muralidharan V., Ahmedbasha C. // Int. J. Hydrogen Energy. 2009. V. 34. № 3. P. 1548. https://doi.org/10.1016/j.ijhydene.2008.11.074
  45. Abitkar S.B., Dhas S.D., Jadhav N.P. et al. // J. Mater. Sci. Mater. Electron. 2021. V. 32. № 7. P. 8657. https://doi.org/10.1007/s10854-021-05529-x
  46. Dudorova D.A., Simonenko T.L., Simonenko N.P. et al. // Molecules 2023. V. 28. № 6. P. 2515. https://doi.org/10.3390/molecules28062515
  47. He W., Li X., An S. et al. // Sci. Rep. 2019. V. 9. № 1. P. 10838. https://doi.org/10.1038/s41598-019-47120-9
  48. Zhang J.T., Liu S., Pan G.L. et al. // J. Mater. Chem. A. 2014. V. 2. № 5. P. 1524. https://doi.org/10.1039/C3TA13578K
  49. Mokrushin A.S., Simonenko T.L., Simonenko N.P. et al. // Appl. Surf. Sci. 2022. V. 578. P. 151984. https://doi.org/10.1016/j.apsusc.2021.151984

Дополнительные файлы


© Т.Л. Симоненко, Д.А. Дудорова, Н.П. Симоненко, Е.П. Симоненко, Н.Т. Кузнецов, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».