Влияние соотношения исходных компонентов в системе Ti–B на структуру и свойства материалов, полученных методом СВС-экструзии

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Изучено влияние соотношения исходных компонентов порошков титана и бора на температуру и скорость горения в режиме самораспространяющегося высокотемпературного синтеза, а также на микроструктуру, фазовый состав и физико-механические свойства стержней, полученных методом СВС-экструзии. Объектами исследования служили материалы с расчетным фазовым составом продуктов синтеза TiB–(20–40) мас. % Ti. Рассмотрен вопрос об образовании твердого раствора бора в титане. На основании результатов СЭМ, РФА и измеренных механических характеристик установлена текстурированность полученных материалов (вискеры TiB выстраиваются вдоль направления приложения внешнего давления). Электрическая проводимость всех изученных составов близка к проводимости чистого титана, а при увеличении массовой доли бора происходит незначительное повышение электрического сопротивления. Установлено, что с ростом массовой доли твердого раствора бора в титане от 20 до 40 мас. % прочность материала при трехточечном изгибе увеличивается до 1.7 раза.

Об авторах

А. С. Константинов

Институт структурной макрокинетики и проблем материаловедения
им. А.Г. Мержанова РАН

Email: mora1997@mail.ru
Россия, 142432, Черноголовка, ул. Академика Осипьяна, 8

А. П. Чижиков

Институт структурной макрокинетики и проблем материаловедения
им. А.Г. Мержанова РАН

Email: mora1997@mail.ru
Россия, 142432, Черноголовка, ул. Академика Осипьяна, 8

М. С. Антипов

Институт структурной макрокинетики и проблем материаловедения
им. А.Г. Мержанова РАН

Email: mora1997@mail.ru
Россия, 142432, Черноголовка, ул. Академика Осипьяна, 8

П. М. Бажин

Институт структурной макрокинетики и проблем материаловедения
им. А.Г. Мержанова РАН

Автор, ответственный за переписку.
Email: mora1997@mail.ru
Россия, 142432, Черноголовка, ул. Академика Осипьяна, 8

Список литературы

  1. Hayat M.D., Singh H., He Z., Cao P. // Composites Part A. 2019. V. 121. P. 418. https://doi.org/10.1016/j.compositesa.2019.04.005
  2. Zhang Y., He S., Yang W. et al. // Mater. 2019. V. 12. № 23. P. 4006. https://doi.org/10.3390/ma12234006
  3. Joseph A.O., Jina Z., Yang H., Matthew S.D. // ACS Appl. Nano Mater. 2020. V. 3. № 8. P. 8208. https://doi.org/10.1021/acsanm.0c01640
  4. Anil V.K., Gupta R.K., Prasad M.J.N.V., Narayana M.S.V.S. // J. Mater. Res. 2021. V. 36. № 3. P. 689. https://doi.org/10.1557/s43578-021-00104-w
  5. Comín R., Cid M.P., Grinschpun L. et al. // J. Appl. Biomater. Funct. Mater. 2017. V. 15. № 3. P. 176. https://doi.org/10.5301/jabfm.5000340
  6. Chen Y., Zhang J., Dai N. et al. // Electrochim. Acta. 2017. V. 232. P. 89. https://doi.org/10.1016/j.electacta.2017.02.112
  7. Sousa L., Alves A.C., Costa N.A. et al. // J. Alloys Compd. 2022. V. 896. № 162965. https://doi.org/10.1016/j.jallcom.2021.162965
  8. Chen T., Li W., Liu D. et al. // Ceram. Int. 2021. V. 47. № 1. P. 755. https://doi.org/10.1016/j.ceramint.2020.08.186
  9. Otte J.A., Zou J., Patel R. et al. // Nanomater. 2020. V. 10. № 12. P. 1. https://doi.org/10.3390/nano10122480
  10. An Q., Huang L., Jiang S. et al. // Ceram. Int. 2020. V. 46. № 6. P. 8068. https://doi.org/10.1016/j.ceramint.2019.12.032
  11. Feng Y., Feng K., Yao C. et al. // Mater. Des. 2018. V. 157. P. 258. https://doi.org/10.1016/j.matdes.2018.07.045
  12. Tao X., Yao Z., Zhang S. et al. // Surf. Coat. Technol. 2018. V. 337. https://doi.org/10.1016/j.surfcoat.2018.01.054
  13. Zhang G., Li S., Qu H. et al. // Adv. Mater. Sci. Eng. 2022. V. 20. 8906135 https://doi.org/10.1155/2022/8906135
  14. Pathi H., Mishri T.K., Panigrahi S.R. et al. // East Eur. J. Phys. 2021. № 3. P. 5. https://doi.org/10.26565/2312-4334-2021-3-01
  15. Sanguigno L., Lepore M.A., Maligno A.R. // Adv. Transdisciplinary Eng. 2021. V. 15. P. 159. https://doi.org/10.3233/ATDE210030
  16. Zhang G., Yuan M., Hou H. // J. Plast. Eng. 2020. V. 27. № 9. P. 117. https://doi.org/10.3969/j.issn.1007-2012.2020.09.017
  17. Weng F., Yu H., Du X. et al. // Ceram. Int. 2022. V. 48. № 5. P. 7056. https://doi.org/10.1016/j.ceramint.2021.11.263
  18. Song Y., Qiu F., Savvakin D. et al. // Mater. 2022. V. 15. № 3. P. 1049. https://doi.org/10.3390/ma15031049
  19. Muhammad D.H., Harshpreet S., Zhen H., Peng C. // Composites Part A. 2019. V. 121. P. 418. https://doi.org/10.1016/j.compositesa.2019.04.005
  20. Van P.P. // Eng. Struct. 2021. V. 229. 111567. https://doi.org/10.1016/j.engstruct.2020.111567
  21. Yang Y., Chen J., Huang Z. // Int. J. Damage Mech. 2020. V. 29. № 1. P. 67. https://doi.org/10.1177/1056789519854488
  22. Dadbakhsh S., Mertens R., Hao L. et al. // Adv. Eng. Mater. 2019. V. 1. 1801144. https://doi.org/10.1002/adem.201801244
  23. Bazhin P.M., Konstantinov A.S., Chizhikov A.P. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 12. P. 2040. [Бажин П.М., Константинов А.С., Чижиков А.П. и др. // Журн. неорган. химии. 2022. Т. 67. № 12. С. 1829. https://doi.org/10.31857/S0044457X22601225].https://doi.org/10.1134/S0036023622601696
  24. Xie L., Ren S., Yin F. // Mater. Charact. 2023. V. 195. 112511. https://doi.org/10.1016/j.matchar.2022.112511
  25. Tian N., Dong L.L., Wang H.L. et al. // J. Alloys Compd. 2021. V. 867. https://doi.org/10.1016/j.jallcom.2021.159093
  26. Wu H., Lei C., Du Y. et al. // Ceram. Int. 2021. V. 47. № 8. P. 11423. https://doi.org/10.1016/j.ceramint.2020.12.269
  27. Huo P., Zhao Z., Du W., Bai P. // Ceram. Int. 2021. V. 47. № 14. P. 19546. https://doi.org/10.1016/j.ceramint.2021.03.292
  28. Wang M., Cui H., Wei N. et al. // ACS Appl. Mater. Interfaces. 2018. V. 10. № 4. P. 4250. https://doi.org/10.1021/acsami.7b17286
  29. Peng Y.B., Zhang W., Mei X.L. et al. // Mater. Today Commun. 2020. V. 24. https://doi.org/10.1016/j.mtcomm.2020.101009
  30. Lapshin O.V., Boldyreva E.V., Boldyrev V.V. // Russ. J. Inorg. Chem. 2021. V. 66. № 3. P. 433. [Лапшин О.В., Болдырева Е.В., Болдырев В.В. // Журн. неорган. химии. 2021. Т. 66. № 3. С. 402. https://doi.org/10.31857/S0044457X21030119]https://doi.org/10.1134/S0036023621030116
  31. Chizhikov A.P., Konstantinov A.S., Bazhin P.M. // Russ. J. Inorg. Chem. 2021. V. 66. № 8. P. 1115. [Чижиков А.П., Константинов А.С., Бажин П.М. // Журн. неорган. химии. 2021. Т. 66. № 8. С. 1002. https://doi.org/10.31857/S0044457X21080031]https://doi.org/10.1134/S0036023621080039
  32. Radishevskaya N.I., Nazarova A.Y., L’vov O.V. et al. // Inorg. Mater. 2020. V. 56. № 2. P. 142. [Радишевская Н.И., Назарова А.Ю., Львов О.В. и др. // Неорган. материалы 2020. Т. 56. № 2. С. 151.]https://doi.org/10.1134/S0020168520010112
  33. Zhang X., Xu Q., Han J. et al. // Mater. Sci. Eng. 2003. P. 41. https://doi.org/10.1016/S0921-5093(02)00635-4
  34. Kovalev D.Yu., Konstantinov A.S., Konovalikhin S.V. et al. // Combust. Explosion Shock Waves. 2020. V. 56. № 6. P. 648. [Ковалев Д.Ю., Константинов А.С., Коновалихин С.В. и др. // Физика горения и взрыва. 2020. Т. 56. № 6. С. 33. https://doi.org/10.15372/FGV20200604]https://doi.org/10.1134/S0010508220060040
  35. Podlesov V.V., Radugin A.V., Stolin A.M., Merzhanov A.G. // Inzhenerno-Fizicheskii Zhurnal. 1992. V. 63. № 5. P. 525.
  36. Bazhin P.M., Konstantinov A.S., Chizhikov A.P. et al. // Mater. Today Commun. 2020. V. 25. P. 101484. https://doi.org/10.1016/j.mtcomm.2020.101484
  37. Stel’makh L.S., Stolin. A.M., Bazhin. P.M. // Inorg. Mater. 2020. V. 56. № 7. P. 695. https://doi.org/10.1134/S0020168520070158
  38. Konstantinov A.S., Bazhin P.M., Stolin A.M. et al. // Composites Part A. 2018. V. 108. P. 79. https://doi.org/10.1016/j.compositesa.2018.02.027
  39. Bazhin P.M., Kostitsyna E.V., Stolin A.M. et al. // Ceram. Int. 2019. V. 45. № 7. P. 9297. https://doi.org/10.1016/j.ceramint.2019.01.188
  40. Bolotskaya A.V., Mikheev M.V. // Refract. Ind. Ceram. 2020. V. 61. № 3. P. 336. https://doi.org/10.1007/s11148-020-00483-3
  41. Antipov M.S., Bazhin P.M., Chizhikov A.P. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 10. P. 1658. [Антипов М.С., Бажин П.М., Чижиков А.П. и др. // Журн. неорган. химии. 2022. Т. 67. № 10. С. 1498. https://doi.org/10.31857/S0044457X22100361]https://doi.org/10.1134/S0036023622100564
  42. Bazhin P., Chizhikov A., Stolin A. et al. // Ceram. Int. 2021. V. 47 P. 28444. https://doi.org/10.1016/j.ceramint.2021.06.262
  43. Stolin A.M., Bazhin P.M. // J. SHS. 2014. V. 23. № 2. P. 65. https://doi.org/10.3103/S1061386214020113
  44. Bazhin P.M., Stolin A.M., Alymov M.I. // Nanotechnol. Russ. 2014. V. 9. № 11–12. P. 583. https://doi.org/10.1134/S1995078014060020
  45. Bazhin P.M., Kostitsyna E.V., Stolin A.M. et al. // Ceram. Int. 2019. V. 45. № 7. P. 9297.https://doi.org/10.1016/j.ceramint.2019.01.188
  46. Bazhin P.M., Stolin A.M., Shcherbakov V.A. et al. // Dokl. Chem. 2010. V. 430. № 2. P. 58. https://doi.org/10.1134/S0012500810020072

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (299KB)
3.

4.


© А.С. Константинов, А.П. Чижиков, М.С. Антипов, П.М. Бажин, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».