Исследование кристаллических структур аниона [B10Cl10]2– с имидазолиевыми катионами

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Предложен новый способ получения имидазолиевых солей перхлорированного клозо-декаборатного аниона (RMIM)2[B10Cl10] (R = H, n-Et, n-Bu, n-C8H17). Синтез этих соединений может быть осуществлен простыми реакциями обмена между калиевой солью декахлор-клозо-декаборатного аниона K2[B10Cl10] и хлоридами производных имидазолия. С помощью рентгеноструктурного анализа и анализа поверхности Хиршфельда исследованы кристаллические упаковки и межмолекулярные взаимодействия для соединений (EMIM)2[B10Cl10] и (BMIM)2[B10Cl10]. Анионы [B10Cl10]2– в кристаллической решетке этих соединений связаны сеткой слабых взаимодействий Cl…Cl с расстоянием между атомами хлора 2.246–3.623 Å.

Об авторах

А. В. Голубев

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: golalekseival@mail.ru
Россия, 119991, Москва, Ленинский пр-т, 31

А. С. Кубасов

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: golalekseival@mail.ru
Россия, 119991, Москва, Ленинский пр-т, 31

А. Ю. Быков

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: golalekseival@mail.ru
Россия, 119991, Москва, Ленинский пр-т, 31

Е. Ю. Матвеев

Институт общей и неорганической химии им. Н.С. Курнакова РАН; МИРЭА – Российский технологический университет (Институт тонких химических
технологий им. М.В. Ломоносова)

Email: cat1983@yandex.ru
Россия, 119991, Москва, Ленинский пр-т, 31; Россия, 119571, Москва, пр-т Вернадского, 86

Н. А. Саркисов

Институт общей и неорганической химии им. Н.С. Курнакова РАН; МИРЭА – Российский технологический университет (Институт тонких
химических технологий им. М.В. Ломоносова)

Email: golalekseival@mail.ru
Россия, 119991, Москва, Ленинский пр-т, 31; Россия, 119571, Москва, пр-т Вернадского, 86

И. В. Новиков

Институт общей и неорганической химии им. Н.С. Курнакова РАН; МИРЭА – Российский технологический университет (Институт тонких
химических технологий им. М.В. Ломоносова)

Email: golalekseival@mail.ru
Россия, 119991, Москва, Ленинский пр-т, 31; Россия, 119571, Москва, пр-т Вернадского, 86

П. С. Стародубец

Российский химико-технологический университет им. Д.И. Менделеева

Email: golalekseival@mail.ru
Россия, 125047, Москва, Миусская пл., 9

Н. А. Романов

Российский химико-технологический университет им. Д.И. Менделеева

Email: golalekseival@mail.ru
Россия, 125047, Москва, Миусская пл., 9

К. Ю. Жижин

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: golalekseival@mail.ru
Россия, 119991, Москва, Ленинский пр-т, 31

Н. Т. Кузнецов

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Автор, ответственный за переписку.
Email: zhdanov@igic.ras.ru
Россия, 119991, Москва, Ленинский пр-т, 31

Список литературы

  1. Krossing I., Raabe I. // Angew. Chem. Int. Ed. 2004. V. 43. № 16. P. 2066. https://doi.org/10.1002/anie.200300620
  2. Kessler M., Knapp C., Sagawe V. et al. // Inorg. Chem. 2010. V. 49. № 11. P. 5223. https://doi.org/10.1021/ic100337k
  3. Kim K.C., Reed C.A., Long G.S. et al. // J. Am. Chem. Soc. 2002. V. 124. № 26. P. 7662. https://doi.org/10.1021/ja0259990
  4. Knapp C. // Compr. Inorg. Chem. II. 2013. V. 1. P. 651. https://doi.org/10.1016/B978-0-08-097774-4.00125-X
  5. Zhu Y., Hosmane N.S. // Eur. J. Inorg. Chem. 2017. V. 2017. № 38. P. 4369. https://doi.org/10.1002/ejic.201700553
  6. Martínez-Palou R. // Mol. Divers. 2010. V. 14. № 1. P. 3. https://doi.org/10.1007/s11030-009-9159-3
  7. El Abedin S.Z., Pölleth M., Meiss S.A. et al. // Green Chem. 2007. V. 9. № 6. P. 549. https://doi.org/10.1039/b614520e
  8. Zhao D., Liao Y., Zhang Z.D. // Clean – Soil, Air, Water. 2007. V. 35. № 1. P. 42. https://doi.org/10.1002/clen.200600015
  9. Sivaev I.B., Prikaznov A.V., Naoufal D. // Collect. Czech. Chem. Commun. 2010. V. 75. № 11. P. 1149. https://doi.org/10.1135/cccc2010054
  10. Avdeeva V.V., Malinina E.A., Sivaev I.B. et al. // Crystal. 2016. V. 6. № 5. P. 60. https://doi.org/10.3390/cryst6050060
  11. Golubev A.V., Kubasov A.S., Turyshev E.S. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 9. P. 1333. https://doi.org/10.1134/S0036023620090041
  12. Zhizhin K.Y., Zhdanov A.P., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2010. V. 55. № 14. P. 2089. https://doi.org/10.1134/S0036023610140019
  13. Ivanov S.V., Davis J.A., Miller S.M. et al. // Inorg. Chem. 2003. V. 42. № 15. P. 4489. https://doi.org/10.1021/ic0344160
  14. Avdeeva V.V., Malinina E.A., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2017. V. 62. № 13. P. 1673. https://doi.org/10.1134/S0036023617130022
  15. Avdeeva V.V., Malinina E.A., Zhizhin K.Y. et al. // Russ. J. Coord. Chem. 2021. V. 47. № 8. P. 519. https://doi.org/10.1134/S1070328421080017
  16. Stogniy M.Y., Bogdanova E.V., Anufriev S.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 10. P. 1537. https://doi.org/10.1134/S0036023622600848
  17. Avdeeva V.V., Garaev T.M., Malinina E.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 1. P. 28. https://doi.org/10.1134/S0036023622010028
  18. Avdeeva V.V., Kubasov A.S., Korolenko S.E. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 5. P. 628. https://doi.org/10.1134/S0036023622050023
  19. Sivaev I.B. // Chem. Heterocycl. Compd. 2017. V. 53. № 6–7. P. 638. https://doi.org/10.1007/s10593-017-2106-9
  20. Green M.D., Long T.E. // Polym. Rev. 2009. V. 49. № 4. P. 291. https://doi.org/10.1080/15583720903288914
  21. Markiewicz R., Klimaszyk A., Jarek M. et al. // Int. J. Mol. Sci. 2021. V. 22. № 11. P. 5935. https://doi.org/10.3390/ijms22115935
  22. Pádua A.A.H., Costa Gomes M.F., Canongia Lopes J.N.A. // Acc. Chem. Res. 2007. V. 40. № 11. P. 1087. https://doi.org/10.1021/ar700050q
  23. Kravchenko E.A., Gippius A.A., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2020. V. 65. № 4. P. 546. https://doi.org/10.1134/S0036023620040105
  24. Jiao N., Zhang Y., Liu L. et al. // J. Mater. Chem. A. 2017. V. 5. № 26. P. 13341. https://doi.org/10.1039/c7ta04038e
  25. Nieuwenhuyzen M., Seddon K.R., Teixidor F. et al. // Inorg. Chem. 2009. V. 48. № 3. P. 889. https://doi.org/10.1021/ic801448w
  26. Belletire J.L., Schneider S., Shackelford S.A. et al. // J. Fluor. Chem. 2011. V. 132. № 11. P. 925. https://doi.org/10.1016/j.jfluchem.2011.07.009
  27. Zhou N., Zhao G., Dong K. et al. // RSC Adv. 2012. V. 2. № 26. P. 9830. https://doi.org/10.1039/c2ra21700g
  28. Golub I.E., Filippov O.A., Belkova N.V. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 11. P. 1639. https://doi.org/10.1134/S0036023621110073
  29. Larsen A.S., Holbrey J.D., Tham F.S. et al. // J. Am. Chem. Soc. 2000. V. 122. № 30. P. 7264. https://doi.org/10.1021/ja0007511
  30. Kravchenko E.A., Gippius A.A., Zhurenko S.V. et al. // Polyhedron. 2021. V. 210. P. 115514. https://doi.org/10.1016/j.poly.2021.115514
  31. Golubev A.V., Kubasov A.S., Bykov A.Y. et al. // Inorg. Chem. 2021. V. 60. № 12. P. 8592. https://doi.org/10.1021/acs.inorgchem.1c00516
  32. Matveev E.Y., Kubasov A.S., Razgonyaeva G.A. et al. // Russ. J. Inorg. Chem. 2015. V. 60. № 7. P. 776. https://doi.org/10.1134/S0036023615070104
  33. Matveev E.Y., Levitskaya V.Y., Novikov S.S. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 12. P. 1928. https://doi.org/10.1134/S0036023622601532
  34. Burdenkova A.V., Zhdanov A.P., Klyukin I.N. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 11. P. 1616. https://doi.org/10.1134/S0036023621110036
  35. Justus E., Rischka K., Wishart J.F. et al. // Chem. – A Eur. J. 2008. V. 14. № 6. P. 1918. https://doi.org/10.1002/chem.200701427
  36. Kravchenko E.A., Gippius A.A., Vologzhanina A.V. et al. // Polyhedron. 2016. V. 117. P. 561. https://doi.org/10.1016/j.poly.2016.06.016
  37. SAINT, Bruker AXS Inc.: Madison (WI), USA 2018
  38. Krause L., Herbst-Irmer R., Sheldrick G.M. et al. // J. Appl. Crystallogr. 2015. V. 48. № 1. P. 3. https://doi.org/10.1107/S1600576714022985
  39. Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. № Md. P. 3. https://doi.org/10.1107/S2053229614024218
  40. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/S0021889808042726
  41. Spackman P.R., Turner M.J., McKinnon J.J. et al. // J. Appl. Crystallogr. 2021. V. 54. P. 1006. https://doi.org/10.1107/S1600576721002910
  42. Dharaskar S.A., Varma M.N., Shende D.Z. et al. // Sci. World J. 2013. V. 2013. № 395274. P. 1. https://doi.org/10.1155/2013/395274

Дополнительные файлы


© А.В. Голубев, А.С. Кубасов, А.Ю. Быков, Е.Ю. Матвеев, Н.А. Саркисов, И.В. Новиков, П.С. Стародубец, Н.А. Романов, К.Ю. Жижин, Н.Т. Кузнецов, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах