Влияние содержания металлического серебра в наночастицах ZnO–Ag на их фотохимическую и антибактериальную активность

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Разработка новых материалов с антибактериальными свойствами является перспективным направлением в области исследования нанодисперсных систем. В настоящей работе наночастицы ZnO–Ag с содержанием серебра 0.1–50 ат. % получены электрическим взрывом проводников. Наночастицы ZnO–Ag поглощают видимый свет и разлагают модельный краситель родамин Б. Введение серебра позволило сместить край основного поглощения до 1.59–2.74 эВ. Определено оптимальное содержание серебра в наночастицах (12 ат. %), позволяющее обеспечить степень обесцвечивания родамина Б 85% в течение 60 мин облучения видимым светом и полностью остановить рост бактерий Escherichia coli в концентрации 15.6 мкг/мл. Кроме того, наночастицы, содержащие 12 ат. % серебра, стерилизовали пробу природной воды, загрязненной микроорганизмами. На основании полученных результатов предложен эффективный способ синтеза антибактериальных нанокомпозитов с гетеропереходами при помощи высокопроизводительного метода получения наночастиц – электрического взрыва проводников.

Об авторах

О. В. Бакина

Институт физики прочности и материаловедения СО РАН

Email: ovbakina@ispms.tsc.ru
Россия, 634021, Томск, пр-т Академический, 2/4

В. Р. Чжоу

Институт физики прочности и материаловедения СО РАН

Email: ovbakina@ispms.tsc.ru
Россия, 634021, Томск, пр-т Академический, 2/4

Л. Ю. Иванова

Институт физики прочности и материаловедения СО РАН

Email: ovbakina@ispms.tsc.ru
Россия, 634021, Томск, пр-т Академический, 2/4

С. О. Казанцев

Институт физики прочности и материаловедения СО РАН

Автор, ответственный за переписку.
Email: ovbakina@ispms.tsc.ru
Россия, 634021, Томск, пр-т Академический, 2/4

Список литературы

  1. Kollef M.H., Torres A., Shorr A.F. et al. // Crit. Care Med. 2021. V. 49. № 2. P. 169. https://doi.org/10.1097/CCM.0000000000004783
  2. Gupta A., Mumtaz S., Li C.H. et al. // Chem. Soc. Rev. 2019. V. 48. P. 415. https://doi.org/10.1039/c7cs00748e
  3. Sharmin S., Rahaman M.M., Sarkar C. et al. // Heliyon. 2021. V. 7. № 3. P. e06456. https://doi.org/10.1016/j.heliyon.2021.e06456
  4. Correa M.G., Martínez F.B., Vidalet C.P. et al. // Beilstein J. Nanotechnol. 2020. V. 11. № 1. P. 1450. https://doi.org/10.3762/bjnano.11.129
  5. Jiang W.Y., Ran S.Y. // J. Chem. Phys. 2018. V. 148. № 20. P. 205102. https://doi.org/10.1063/1.5025348
  6. Akter M., Sikder M.T., Rahman M.M. et al. // J. Adv. Res. 2018. V. 9. P. 1. https://doi.org/10.1016/j.jare.2017.10.008
  7. Li H., Zhou X., Huang Y. et al. // Front. Microbiol. 2021. V. 11. P. 622534. https://doi.org/10.3389/fmicb.2020.62253
  8. Borysiewicz M.A. // Crystals. 2019. V. 9. № 10. P. 505. https://doi.org/10.3390/cryst9100505
  9. Alharthi F.A., Alghamdi A.A., Al-Zaqri N. et al. // Scie. Rep. 2020. V. 10. № 1. P. 1. https://doi.org/10.1038/s41598-020-77426-y
  10. Intaphonga P., Phurangrata A., Yeebua H. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 14. P. 2121. https://doi.org/10.1134/S0036023621140047
  11. Deng Q., Duan X., Ng D.H.L. et al. // ACS Appl. Mater. Interfaces. 2012. V. 4. P. 6030. https://doi.org/10.1021/am301682g
  12. Chomkitichai W., Jansanthea P., Channei D. // Russ. J. Inorg. Chem. 2021. V. 66. № 13. P. 1995. https://doi.org/10.1134/S0036023621130027
  13. Dymnikova N.S., Erokhina E.V., Moryganov A.P. // Russ. J. Gen. Chem. 2021. V. 91. № 3. P. 564. https://doi.org/10.1134/S1070363221030270
  14. Burlibaşa L., Chifiriuc M.C., Lungu M.V. et al. // Arabian J. Chem. 2020. V. 13. № 2. P. 4180. https://doi.org/10.1016/j.arabjc.2019.06.015
  15. Li Z. Zhang F., Meng A. et al. // RSC Adv. 2015. V. 5. № 1. P. 612. https://doi.org/10.1039/C4RA12319K
  16. Thatikayala D., Banothu V., Kim J. et al. // J. Mater. Sci. 2020. V. 31. № 7. P. 5324. https://doi.org/10.1007/s10854-020-03093-4
  17. El-Nahhal I.M., Lee K.M., Hwang S. et al. // Sci. Rep. 2020. V. 10. № 1. P. 1. https://doi.org/10.1038/s41598-020-61306-6
  18. Zare M., Namratha K., Alghamdi S. et al. // Sci. Rep. 2019. V. 9. № 1. P. 1. https://doi.org/10.1038/s41598-019-44309-w
  19. Tauc J., Grigorovici R., Vancu A. et al. // Phys. Status Solidi. 1966. V. 2. № 15. P. 627. https://doi.org/10.1002/pssb.19660150224
  20. Rani S., Aggarwal M., Kumar M. et al. // Water Sci. 2016. V. 30. № 1. P. 51. https://doi.org/10.1016/j.wsj.2016.04.001
  21. M07-A9 CLSI 2012 “Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard – Ninth Edition”. https://clsi.org/standards/products/microbiology/documents/m07/
  22. Bakina O.V., Glazkova E.A., Pervikov A.V. et al. // J. Mater. Sci.-Mater. Electron. 2021. V. 32. № 8. P. 10623. https://doi.org/10.1007/s10854-019-01684-4
  23. Ferreira N.S., Sasaki J.M., Silva Jr R.S. et al. // Inorg. Chem. 2021. V. 60. № 7. P. 4475. https://doi.org/10.1021/acs.inorgchem.0c03327
  24. Chiu Y.H., Mark Chang T.F., Chen C.Y. et al. // Catalysts. 2019. V. 9. P. 430. https://doi.org/10.3390/catal9050430
  25. Yang J., Luo X. // Appl. Surf. Sci. 2021. V. 542. P. 148724. https://doi.org/10.1016/j.apsusc.2020.148724
  26. Panwar A., Yadav K.L. // Mater. Lett. 2022. V. 309. P. 131469. https://doi.org/10.1016/j.matlet.2021.131469
  27. Kumar T.K.M.P., Mandlimath T.R., Sangeetha P. et al. // RSC Adv. 2015. V. 5. № 130. P 108034. https://doi.org/10.1039/C5RA19945J
  28. Khoshkbejari M., Jafari A., Safari M. // Orient. J. Chem. 2015. V. 31. № 3. P. 1437. https://doi.org/10.13005/ojc/310322
  29. Adhikari S., Banerjee A., Eswar N.K.R. et al. // RSC Adv. 2015. V. 5. № 63. P. 51067. https://doi.org/10.1039/C5RA06406F

Дополнительные файлы


© О.В. Бакина, В.Р. Чжоу, Л.Ю. Иванова, С.О. Казанцев, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».