The Effect of Silver Content in ZnO–Ag Nanoparticles on Their Photochemical and Antibacterial Activity

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The development of new materials with antibacterial properties is a promising direction in the field of nanotechnology. In this work, ZnO–Ag nanoparticles with a silver content of 0.1–50 at % have been fabricated by the exploding wire method. ZnO–Ag nanoparticles absorb visible light and destroy the model dye Rhodamine B. The introduction of silver into nanoparticles has made it possible to shift the main absorption edge to 1.59–2.74 eV. The determined optimal content of silver in nanoparticles of 12 at % has ensured the degree of Rhodamine B decoloration by 85% within 60 min of exposure to visible light and has completely stopped the growth of E. coli bacteria at a concentration of 15.6 µg/mL. In addition, nanoparticles containing 12 at % silver have sterilized a sample of natural water contaminated with microorganisms. The results obtained offer an efficient method for the synthesis of antibacterial nanocomposites with heterojunctions employing a high-performance technique for producing nanoparticles, namely, the exploding wire method.

Sobre autores

O. Bakina

Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences

Email: ovbakina@ispms.tsc.ru
634021, Tomsk, Russia

V. Chzhou

Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences

Email: ovbakina@ispms.tsc.ru
634021, Tomsk, Russia

L. Ivanova

Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences

Email: ovbakina@ispms.tsc.ru
634021, Tomsk, Russia

S. Kazantsev

Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: ovbakina@ispms.tsc.ru
634021, Tomsk, Russia

Bibliografia

  1. Kollef M.H., Torres A., Shorr A.F. et al. // Crit. Care Med. 2021. V. 49. № 2. P. 169. https://doi.org/10.1097/CCM.0000000000004783
  2. Gupta A., Mumtaz S., Li C.H. et al. // Chem. Soc. Rev. 2019. V. 48. P. 415. https://doi.org/10.1039/c7cs00748e
  3. Sharmin S., Rahaman M.M., Sarkar C. et al. // Heliyon. 2021. V. 7. № 3. P. e06456. https://doi.org/10.1016/j.heliyon.2021.e06456
  4. Correa M.G., Martínez F.B., Vidalet C.P. et al. // Beilstein J. Nanotechnol. 2020. V. 11. № 1. P. 1450. https://doi.org/10.3762/bjnano.11.129
  5. Jiang W.Y., Ran S.Y. // J. Chem. Phys. 2018. V. 148. № 20. P. 205102. https://doi.org/10.1063/1.5025348
  6. Akter M., Sikder M.T., Rahman M.M. et al. // J. Adv. Res. 2018. V. 9. P. 1. https://doi.org/10.1016/j.jare.2017.10.008
  7. Li H., Zhou X., Huang Y. et al. // Front. Microbiol. 2021. V. 11. P. 622534. https://doi.org/10.3389/fmicb.2020.62253
  8. Borysiewicz M.A. // Crystals. 2019. V. 9. № 10. P. 505. https://doi.org/10.3390/cryst9100505
  9. Alharthi F.A., Alghamdi A.A., Al-Zaqri N. et al. // Scie. Rep. 2020. V. 10. № 1. P. 1. https://doi.org/10.1038/s41598-020-77426-y
  10. Intaphonga P., Phurangrata A., Yeebua H. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 14. P. 2121. https://doi.org/10.1134/S0036023621140047
  11. Deng Q., Duan X., Ng D.H.L. et al. // ACS Appl. Mater. Interfaces. 2012. V. 4. P. 6030. https://doi.org/10.1021/am301682g
  12. Chomkitichai W., Jansanthea P., Channei D. // Russ. J. Inorg. Chem. 2021. V. 66. № 13. P. 1995. https://doi.org/10.1134/S0036023621130027
  13. Dymnikova N.S., Erokhina E.V., Moryganov A.P. // Russ. J. Gen. Chem. 2021. V. 91. № 3. P. 564. https://doi.org/10.1134/S1070363221030270
  14. Burlibaşa L., Chifiriuc M.C., Lungu M.V. et al. // Arabian J. Chem. 2020. V. 13. № 2. P. 4180. https://doi.org/10.1016/j.arabjc.2019.06.015
  15. Li Z. Zhang F., Meng A. et al. // RSC Adv. 2015. V. 5. № 1. P. 612. https://doi.org/10.1039/C4RA12319K
  16. Thatikayala D., Banothu V., Kim J. et al. // J. Mater. Sci. 2020. V. 31. № 7. P. 5324. https://doi.org/10.1007/s10854-020-03093-4
  17. El-Nahhal I.M., Lee K.M., Hwang S. et al. // Sci. Rep. 2020. V. 10. № 1. P. 1. https://doi.org/10.1038/s41598-020-61306-6
  18. Zare M., Namratha K., Alghamdi S. et al. // Sci. Rep. 2019. V. 9. № 1. P. 1. https://doi.org/10.1038/s41598-019-44309-w
  19. Tauc J., Grigorovici R., Vancu A. et al. // Phys. Status Solidi. 1966. V. 2. № 15. P. 627. https://doi.org/10.1002/pssb.19660150224
  20. Rani S., Aggarwal M., Kumar M. et al. // Water Sci. 2016. V. 30. № 1. P. 51. https://doi.org/10.1016/j.wsj.2016.04.001
  21. M07-A9 CLSI 2012 “Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard – Ninth Edition”. https://clsi.org/standards/products/microbiology/documents/m07/
  22. Bakina O.V., Glazkova E.A., Pervikov A.V. et al. // J. Mater. Sci.-Mater. Electron. 2021. V. 32. № 8. P. 10623. https://doi.org/10.1007/s10854-019-01684-4
  23. Ferreira N.S., Sasaki J.M., Silva Jr R.S. et al. // Inorg. Chem. 2021. V. 60. № 7. P. 4475. https://doi.org/10.1021/acs.inorgchem.0c03327
  24. Chiu Y.H., Mark Chang T.F., Chen C.Y. et al. // Catalysts. 2019. V. 9. P. 430. https://doi.org/10.3390/catal9050430
  25. Yang J., Luo X. // Appl. Surf. Sci. 2021. V. 542. P. 148724. https://doi.org/10.1016/j.apsusc.2020.148724
  26. Panwar A., Yadav K.L. // Mater. Lett. 2022. V. 309. P. 131469. https://doi.org/10.1016/j.matlet.2021.131469
  27. Kumar T.K.M.P., Mandlimath T.R., Sangeetha P. et al. // RSC Adv. 2015. V. 5. № 130. P 108034. https://doi.org/10.1039/C5RA19945J
  28. Khoshkbejari M., Jafari A., Safari M. // Orient. J. Chem. 2015. V. 31. № 3. P. 1437. https://doi.org/10.13005/ojc/310322
  29. Adhikari S., Banerjee A., Eswar N.K.R. et al. // RSC Adv. 2015. V. 5. № 63. P. 51067. https://doi.org/10.1039/C5RA06406F

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (259KB)
3.

Baixar (1MB)
4.

Baixar (1MB)
5.

Baixar (115KB)
6.

Baixar (213KB)
7.

Baixar (144KB)
8.

Baixar (115KB)
9.

Baixar (625KB)

Declaração de direitos autorais © О.В. Бакина, В.Р. Чжоу, Л.Ю. Иванова, С.О. Казанцев, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies