Получение функционально-градиентных материалов на основе карбида кремния и высоколегированной стали по технологии искрового плазменного спекания

Обложка

Цитировать

Полный текст

Аннотация

Важной научной задачей практического материаловедения является получение металлокерамических композитов в виде функционально-градиентных материалов (ФГМ) для изделий специального назначения. В этой связи в работе проведено исследование по применению технологии искрового плазменного спекания (ИПС) для эффективного диффузионного соединения SiC-керамики и высоколегированной стали (марка Х18Р15) с получением соединенного ФГМ-композита. В комплексном экспериментальном исследовании изучена динамика консолидации и изменение фазового состава дисперсного SiC в условиях различных температур и скорости разогрева, давления прессования, времени выдержки. В результате оптимизированы условия ИПС для получения SiC-керамики высокой относительной плотности (>82%) и микротвердости (>500 HV) стабильного фазового состава. Исследованы физико-химические основы формирования прочного соединения двухкомпонетной системы SiC-керамики и стали в условиях ИПС без добавок и с использованием смеси добавок в виде связующего, реакционного связующего и демпфера (системы добавок Ti–Ag, Ti–TiH2, Ti–Ag–TiH2 и Ti–Ag/Mo). Методами РФА, РЭМ и ЭДС изучена структура, состав керамики и промежуточных (связующих и демпферных) слоев, а также диффузия элементов на границе сформированных соединений в ФГМ-композитах. Установлено, что добавка Ti–Ag/Mo в соотношении 30 мас. % Ti–70 мас. % Ag и плотная прослойка Mo (толщина ~2 мм), выполняющего роль демпфера для компенсации температурного коэффициента линейного расширения, обеспечивают формирование соединенного ФГМ-композита целостной формы. Представленные исследования реализованы впервые, являются перспективными и требуют дальнейшего развития с целью наработки научных знаний изготовления композитных изделий специального назначения.

Об авторах

С. В. Чуклинов

Московский авиационный институт (национальный исследовательский университет)

Email: papynov@mail.ru
Россия, 125993, Москва, Волоколамское ш., 4

В. И. Сергиенко

Президиум ДВО РАН

Email: papynov@mail.ru
Россия, 690000, Владивосток, ул. Светланская, 50

Е. К. Папынов

Дальневосточный федеральный университет

Email: papynov@mail.ru
Россия, 690922, о. Русский, п. Аякс, 10

О. О. Шичалин

Дальневосточный федеральный университет

Email: papynov@mail.ru
Россия, 690922, о. Русский, п. Аякс, 10

А. А. Белов

Дальневосточный федеральный университет

Email: papynov@mail.ru
Россия, 690922, о. Русский, п. Аякс, 10

Е. Ю. Марчуков

Московский авиационный институт (национальный исследовательский университет)

Email: papynov@mail.ru
Россия, 125993, Москва, Волоколамское ш., 4

А. Н. Мухин

Московский авиационный институт (национальный исследовательский университет)

Автор, ответственный за переписку.
Email: papynov@mail.ru
Россия, 125993, Москва, Волоколамское ш., 4

Список литературы

  1. Kieback B., Neubrand A., Riedel H. // Mater. Sci. Eng. A. 2003. V. 362. № 1–2. P. 81. https://doi.org/10.1016/S0921-5093(03)00578-1
  2. Saleh B., Jiang J., Fathi R. et al. // Compos. Part B. 2020. V. 201. P. 108376. https://doi.org/10.1016/j.compositesb.2020.108376
  3. Sam M., Jojith R., Radhika N. // J. Manuf. Process. 2021. V. 68. P. 1339. https://doi.org/10.1016/S0921-5093(03)00578-1
  4. Pasha A., B.M.R. // Mater. Today Proc. 2022. V. 52. P. 413. https://doi.org/10.1016/j.matpr.2021.09.077
  5. Ruys A.J., Sutton B.A. // Met. Ceram., Elsevier. 2021. P. 327. https://doi.org/10.1016/B978-0-08-102869-8.00009-4
  6. Martinsen K., Hu S.J., Carlson B.E. // CIRP Ann. 2015. V. 64. P. 679. https://doi.org/10.1016/j.cirp.2015.05.006
  7. Uday M.B., Ahmad-Fauzi M.N., Noor A.M. et al. // Current Issues and Problems in the Joining of Ceramic to Metal. Join. Technol., InTech, 2016. P. 159–193. https://doi.org/10.5772/64524
  8. Zhang Y., Chen Y.K., Yu D.S. et al. // J. Mater. Res. Technol. 2020. V. 9. № 6. P. 16214. https://doi.org/10.1016/j.jmrt.2020.11.088
  9. Hausner S., Wielage B. // Adv. Brazing Sci. Technol. Appl., Woodhead Publishing Limited, 2013. P. 361–393. https://doi.org/10.1533/9780857096500.2.361
  10. Nascimento R.M. do, Martinelli A.E., Buschinelli A.J.A. // Cerâmica. 2003. V. 49. № 312. P. 178. https://doi.org/10.1590/s0366-69132003000400002
  11. Hu Z.Y., Zhang Z.H., Cheng X.W. et al. // Mater. Des. 2020. V. 191. P. 108662. https://doi.org/10.1016/j.matdes.2020.108662
  12. Simonenko E.P., Simonenko N.P., Sevastyanov V.G. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 14. P. 1697. https://doi.org/10.1134/S0036023619140079
  13. Papynov E.K., Portnyagin A.S., Modin E.B. et al. // Mater. Charact. 2018. V. 145. P. 294. https://doi.org/10.1016/j.matchar.2018.08.044
  14. Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 12. P. 1887. https://doi.org/10.1134/S0036023621120172
  15. Shapkin N.P., Papynov E.K., Shichalin O.O. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 5. P. 629. https://doi.org/10.1134/S0036023621050168
  16. Papynov E.K., Shichalin O.O., Buravlev I.Y. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 2. P. 263. https://doi.org/10.1134/S0036023620020138
  17. Shichalin O.O., Frolov K.R., Buravlev I.Y. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 8. P. 1245. https://doi.org/10.1134/S0036023620080148
  18. Simonenko E.P., Simonenko N.P., Gordeev A.N. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 4. P. 421. https://doi.org/10.1134/S0036023618040186
  19. Shichalin O.O., Buravlev I.Y., Portnyagin A.S. et al. // J. Alloys Compd. 2020. V. 816. P. 152547. https://doi.org/10.1016/j.jallcom.2019.152547
  20. Shichalin O.O., Buravlev I.Y., Papynov E.K. et al. // Int. J. Refract. Met. Hard Mater. 2022. V. 102. P. 105725. https://doi.org/10.1016/j.ijrmhm.2021.105725
  21. Buravlev I.Y., Shichalin O.O., Papynov E.K. et al. // Int. J. Refract. Met. Hard Mater. 2021. V. 94. P. 105385. https://doi.org/10.1016/j.ijrmhm.2020.105385
  22. Naveen Kumar N., Janaki Ram G.D., Bhattacharya S.S. // Trans. Indian Inst. Met. 2019. V. 72. № 7. P. 1837. https://doi.org/10.1007/s12666-019-01662-8
  23. Tsakiris V., Kappel W., Talpeanu D. et al. // Adv. Mater. Res. 2014. V. 1029. P. 200. https://doi.org/10.4028/www.scientific.net/AMR.1029.200
  24. Okuni T., Miyamoto Y., Abe H. et al. // Ceram. Int. 2014. V. 40. P. 1359. https://doi.org/10.1016/j.ceramint.2013.07.017
  25. Rizzo S., Grasso S., Salvo M. et al. // J. Eur. Ceram. Soc. 2014. V. 34. № 4. P. 903. https://doi.org/10.1016/j.jeurceramsoc.2013.10.028
  26. Miriyev A., Barlam D., Shneck R. et al. // J. Mater. Process. Technol. 2014. V. 214. № 12. P. 2884. https://doi.org/10.1016/j.jmatprotec.2014.06.026
  27. Miriyev A., Stern A., Tuval E. et al. // J. Mater. Process. Technol. 2013. V. 213. № 2. P. 161. https://doi.org/10.1016/j.jmatprotec.2012.09.017
  28. Zhang B., Chen C., He J. et al. // Materials (Basel). 2020. V. 13. № 15. P. 1. https://doi.org/10.3390/ma13153300
  29. Dudina D.V., Matvienko A.A., Sidelnikov A.A. et al. // Mater. Today Proc. 2019. V. 16. P. 187. https://doi.org/10.1016/j.matpr.2019.05.242
  30. Dudina D.V., Matvienko A.A., Sidelnikov A.A. et al. // Metals (Basel). 2018. V. 8. № 7. https://doi.org/10.3390/met8070538
  31. Хениш Г., Рой Р. // Карбид кремния. М., 1972.
  32. Bokhonov B.B., Ukhina A.V., Dudina D.V. et al. // RSC Adv. 2015. V. 5. № 98. P. 80228. https://doi.org/10.1039/C5RA15439A
  33. Bernard–Granger G., Benameur N., Guizard C. et al. // Scr. Mater. 2009. V. 60. № 3. P. 164. https://doi.org/10.1016/j.scriptamat.2008.09.027
  34. Bertrand A., Carreaud J., Delaizir G. et al. // J. Am. Ceram. Soc. 2014. V. 97. № 1. P. 163. https://doi.org/10.1111/jace.12657
  35. Papynov E.K., Shichalin O.O., Mironenko A.Y. et al. // Radiochemistry. 2018. V. 60. № 4. P. 362. https://doi.org/10.1134/S1066362218040045

© С.В. Чуклинов, В.И. Сергиенко, Е.К. Папынов, О.О. Шичалин, А.А. Белов, Е.Ю. Марчуков, А.Н. Мухин, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».