HYDROTHERMAL SYNTHESIS OF HIERARCHICALLY ORGANIZED MoS2 AND THE FORMATION OF FILMS BASED ON IT
- Autores: Simonenko T.L1, Simonenko N.P1, Zemlyanukhin A.A2, Gorobtsov P.Y.1, Simonenko E.P1
-
Afiliações:
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- D.I. Mendeleyev University of Chemical Technology of Russia
- Edição: Volume 69, Nº 12 (2024)
- Páginas: 1690-1704
- Seção: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://journals.rcsi.science/0044-457X/article/view/289003
- DOI: https://doi.org/10.31857/S0044457X24120035
- EDN: https://elibrary.ru/IXKTME
- ID: 289003
Citar
Resumo
Sobre autores
T. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: egorova.offver@mail.ru
Moscow, Russia
N. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: tol@ccas.ru
Moscow, Russia
A. Zemlyanukhin
D.I. Mendeleyev University of Chemical Technology of RussiaMoscow, Russia
Ph. Gorobtsov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
E. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
Bibliografia
- Muhammad Saqib Q., Mannan A., Noman M. et al. // Chem. Eng. J. 2024. V. 490. P. 151857. https://doi.org/10.1016/j.cej.2024.151857
- Bu F., Zhou W., Xu Y. et al. // npj Flex. Electron. 2020. V. 4. № 1. P. 31. https://doi.org/10.1038/s41528-020-00093-6
- Simonenko T.L., Simonenko N.P., Gorobtsov P.Y. et al. // Materials (Basel). 2023. V. 16. № 18. P. 6133. https://doi.org/10.3390/ma16186133
- Sun X., Chen K., Liang F. et al. // Front. Chem. 2022. V. 9. https://doi.org/10.3389/fchem.2021.807500
- Xie Y., Zhang H., Hu H. et al. // Chem. A Eur. J. 2024. V. 30. № 21. https://doi.org/10.1002/chem.202304160
- Khan Y., Ostfeld A.E., Lochner C.M. et al. // Adv. Mater. 2016. V. 28. № 22. P. 4373. https://doi.org/10.1002/adma.201504366
- Lu Y., Lou Z., Jiang K. et al. // Mater. Today Nano. 2019. V. 8. P. 100050. https://doi.org/10.1016/j.mtnano.2019.100050
- Jia R., Shen G., Qu F. et al. // Energy Storage Mater. 2020. V. 27. P. 169. https://doi.org/10.1016/j.ensm.2020.01.030
- Hepel M. // Electrochem. Sci. Adv. 2023. V. 3. № 3. https://doi.org/10.1002/elsa.202100222
- Han X., Wu X., Zhao L. et al. // Microsystems Nanoeng. 2024. V. 10. № 1. P. 107. https://doi.org/10.1038/s41378-024-00742-0
- Reenu, Sonia, Phor L. et al. // J. Energy Storage. 2024. V. 84. P. 110698. https://doi.org/10.1016/j.est.2024.110698
- Czagany M., Hompoth S., Keshri A.K. et al. // Materials (Basel). 2024. V. 17. № 3. P. 702. https://doi.org/10.3390/ma17030702
- Das H.T., Dutta S., T. E.B. et al. // Handb. Biodegrad. Mater. Springer International Publishing. Cham, 2023. P. 1569. https://doi.org/10.1007/978-3-031-09710-2_41
- Forouzandeh P., Kumaravel V., Pillai S.C. // Catalysts. 2020. V. 10. № 9. P. 969. https://doi.org/10.3390/catal10090969
- Choi W., Choudhary N., Han G.H. et al. // Mater. Today. 2017. V. 20. № 3. P. 116. https://doi.org/10.1016/j.mattod.2016.10.002
- Tao H., Fan Q., Ma T. et al. // Prog. Mater. Sci. 2020. V. 111. P. 100637. https://doi.org/10.1016/j.pmatsci.2020.100637
- Kumar P., Abuhimd H., Wahyudi W. et al. // ECS J. Solid State Sci. Technol. 2016. V. 5. № 11. P. Q3021. https://doi.org/10.1149/2.0051611jss
- Joseph N., Shafi P.M., Bose A.C. // Energy & Fuels. 2020. V. 34. № 6. P. 6558. https://doi.org/10.1021/acs.energyfuels.0c00430
- Mohan M., Shetti N.P., Aminabhavi T.M. // Mater. Today Chem. 2023. V. 27. P. 101333. https://doi.org/10.1016/j.mtchem.2022.101333
- Al-Ghiffari A.D., Ludin N.A., Davies M.L. et al. // Mater. Today Commun. 2022. V. 32. P. 104078. https://doi.org/10.1016/j.mtcomm.2022.104078
- Hu T., Zhang R., Li J.-P. et al. // Chip. 2022. V. 1. № 3. P. 100017. https://doi.org/10.1016/j.chip.2022.100017
- Ji S., Bae S., Hu L. et al. // Adv. Mater. 2024. V. 36. № 2. https://doi.org/10.1002/adma.202309531
- Yin Z., Li H., Li H. et al. // ACS Nano. 2012. V. 6. № 1. P. 74. https://doi.org/10.1021/nn2024557
- Li H., Wu J., Yin Z. et al. // Acc. Chem. Res. 2014. V. 47. № 4. P. 1067. https://doi.org/10.1021/ar4002312
- Cantarella M., Gorrasi G., Di Mauro A. et al. // Sci. Rep. 2019. V. 9. № 1. P. 974. https://doi.org/10.1038/s41598-018-37798-8
- Simonenko T.L., Simonenko N.P., Zemlyanukhin A.A. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 12. P. 1875. https://doi.org/10.1134/S003602362360212X
- Li J., Listwan A., Liang J. et al. // Chem. Eng. J. 2021. V. 422. P. 130100. https://doi.org/10.1016/j.cej.2021.130100
- Wang T., Guo J., Zhang Y. et al. // Cryst. Growth Des. 2024. V. 24. № 7. P. 2755. https://doi.org/10.1021/acs.cgd.3c01369
- Cadot S., Renault O., Fregnaux M. et al. // Nanoscale. 2017. V. 9. № 2. P. 538. https://doi.org/10.1039/C6NR06021H
- Park C., Shim G.W., Hong W. et al. // ACS Appl. Nano Mater. 2023. V. 6. № 10. P. 8981. https://doi.org/10.1021/acsanm.3c01622
- Simonenko T.L., Bocharova V.A., Simonenko N.P. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 4. P. 459. https://doi.org/10.1134/S003602362004018X
- Simonenko T.L., Bocharova V.A., Gorobtsov P.Y. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 9. P. 1292. https://doi.org/10.1134/S0036023620090193
- Simonenko T.L., Dudorova D.A., Simonenko N.P. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 12. P. 1865. https://doi.org/10.1134/S0036023623602131
- Han J.T., Jang J.I., Kim H. et al. // Sci. Rep. 2014. V. 4. № 1. P. 5133. https://doi.org/10.1038/srep05133
- Lukianov M.Y., Rubekina A.A., Bondareva J.V. et al. // Nanomaterials. 2023. V. 13. № 13. P. 1982. https://doi.org/10.3390/nano13131982
- Qiu H., Zheng H., Jin Y. et al. // Ionics (Kiel). 2020. V. 26. № 11. P. 5543. https://doi.org/10.1007/s11581-020-03734-y
- Yan H., Song P., Zhang S. et al. // RSC Adv. 2015. V. 5. № 89. P. 72728. https://doi.org/10.1039/C5RA13036K
- Wang X., Li H., Li H. et al. // Adv. Funct. Mater. 2020. V. 30. № 15. https://doi.org/10.1002/adfm.201910302Reddy
- Inta H., Biswas T., Ghosh S. et al. // ChemNanoMat. 2020. V. 6. № 4. P. 685. https://doi.org/10.1002/cnma.202000005
- Zhao W., Liu X., Yang X. et al. // Nanomaterials. 2020. V. 10. № 6. P. 1124. https://doi.org/10.3390/nano10061124Feng
- J., Fan Y., Zhao H. et al. // Brazilian J. Phys. 2021. V. 51. № 3. P. 493. https://doi.org/10.1007/s13538-021-00863-1Kaur
- J., Gravagnuolo A.M., Maddalena P. et al. // RSC Adv. 2017. V. 7. № 36. P. 22400. https://doi.org/10.1039/C7RA01680HPierucci
- D., Henck H., Naylor C.H. et al. // Sci. Rep. 2016. V. 6. № 1. P. 26656. https://doi.org/10.1038/srep26656
- Yu H., Xu J., Liu Z. et al. // J. Mater. Sci. 2018. V. 53. № 21. P. 15271. https://doi.org/10.1007/s10853-018-2687-4
- Shakya J., Kumar S., Kanjilal D. et al. // Sci. Rep. 2017. V. 7. № 1. P. 9576. https://doi.org/10.1038/s41598-017-09916-5
- Zhou P., Song X., Yan X. et al. // Nanotechnology. 2016. V. 27. № 34. P. 344002. https://doi.org/10.1088/0957-4484/27/34/344002
Arquivos suplementares
