HYDROTHERMAL SYNTHESIS OF HIERARCHICALLY ORGANIZED MoS2 AND THE FORMATION OF FILMS BASED ON IT

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The influence of hydrothermal synthesis parameters on the crystal structure and morphology of MoS2 particles has been shown. The results of synchronous thermal analysis showed that at the concentration of molybdenum cations of 0.05 mol/L, the increase in the duration of hydrothermal treatment leads to a decrease in the total mass loss (Δm), and the increase in c(Mo), on the contrary, results in a significant increase in the total Δm value. The dependence of the exo-effect maximum position, related to the MoS2 oxidation with the formation of MoO3, on the synthesis conditions was determined. According to X-ray diffraction analysis (XRD) data, the 1T-MoS2 phase is formed at minimum c(Mo) and duration of heat treatment. Increasing the time duration leads to the transformation of 1T-phase into 2H-MoS2. With increasing c(Mo), the 2H-phase transforms to 1T-MoS2 and further to 1T/2H-MoS2. The transformation of MoS2 structure was also analyzed by Raman spectroscopy. From the results of scanning electron microscopy (SEM), all samples represent flower-like nanostructures consisting of twisted nanosheets. According to transmission electron microscopy data, individual nanosheets with a length of 50-500 nm are formed after delamination of molybdenum disulfide structures. The microstructure of the obtained MoS2 film was studied by SEM and atomic force microscopy. Analysis of the film surface by Kelvin-probe force microscopy allows to establish the material has high electrical conductivity, and the work function value of the film surface was calculated.

About the authors

T. L Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: egorova.offver@mail.ru
Moscow, Russia

N. P Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: tol@ccas.ru
Moscow, Russia

A. A Zemlyanukhin

D.I. Mendeleyev University of Chemical Technology of Russia

Moscow, Russia

Ph. Yu Gorobtsov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Moscow, Russia

E. P Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Moscow, Russia

References

  1. Muhammad Saqib Q., Mannan A., Noman M. et al. // Chem. Eng. J. 2024. V. 490. P. 151857. https://doi.org/10.1016/j.cej.2024.151857
  2. Bu F., Zhou W., Xu Y. et al. // npj Flex. Electron. 2020. V. 4. № 1. P. 31. https://doi.org/10.1038/s41528-020-00093-6
  3. Simonenko T.L., Simonenko N.P., Gorobtsov P.Y. et al. // Materials (Basel). 2023. V. 16. № 18. P. 6133. https://doi.org/10.3390/ma16186133
  4. Sun X., Chen K., Liang F. et al. // Front. Chem. 2022. V. 9. https://doi.org/10.3389/fchem.2021.807500
  5. Xie Y., Zhang H., Hu H. et al. // Chem. A Eur. J. 2024. V. 30. № 21. https://doi.org/10.1002/chem.202304160
  6. Khan Y., Ostfeld A.E., Lochner C.M. et al. // Adv. Mater. 2016. V. 28. № 22. P. 4373. https://doi.org/10.1002/adma.201504366
  7. Lu Y., Lou Z., Jiang K. et al. // Mater. Today Nano. 2019. V. 8. P. 100050. https://doi.org/10.1016/j.mtnano.2019.100050
  8. Jia R., Shen G., Qu F. et al. // Energy Storage Mater. 2020. V. 27. P. 169. https://doi.org/10.1016/j.ensm.2020.01.030
  9. Hepel M. // Electrochem. Sci. Adv. 2023. V. 3. № 3. https://doi.org/10.1002/elsa.202100222
  10. Han X., Wu X., Zhao L. et al. // Microsystems Nanoeng. 2024. V. 10. № 1. P. 107. https://doi.org/10.1038/s41378-024-00742-0
  11. Reenu, Sonia, Phor L. et al. // J. Energy Storage. 2024. V. 84. P. 110698. https://doi.org/10.1016/j.est.2024.110698
  12. Czagany M., Hompoth S., Keshri A.K. et al. // Materials (Basel). 2024. V. 17. № 3. P. 702. https://doi.org/10.3390/ma17030702
  13. Das H.T., Dutta S., T. E.B. et al. // Handb. Biodegrad. Mater. Springer International Publishing. Cham, 2023. P. 1569. https://doi.org/10.1007/978-3-031-09710-2_41
  14. Forouzandeh P., Kumaravel V., Pillai S.C. // Catalysts. 2020. V. 10. № 9. P. 969. https://doi.org/10.3390/catal10090969
  15. Choi W., Choudhary N., Han G.H. et al. // Mater. Today. 2017. V. 20. № 3. P. 116. https://doi.org/10.1016/j.mattod.2016.10.002
  16. Tao H., Fan Q., Ma T. et al. // Prog. Mater. Sci. 2020. V. 111. P. 100637. https://doi.org/10.1016/j.pmatsci.2020.100637
  17. Kumar P., Abuhimd H., Wahyudi W. et al. // ECS J. Solid State Sci. Technol. 2016. V. 5. № 11. P. Q3021. https://doi.org/10.1149/2.0051611jss
  18. Joseph N., Shafi P.M., Bose A.C. // Energy & Fuels. 2020. V. 34. № 6. P. 6558. https://doi.org/10.1021/acs.energyfuels.0c00430
  19. Mohan M., Shetti N.P., Aminabhavi T.M. // Mater. Today Chem. 2023. V. 27. P. 101333. https://doi.org/10.1016/j.mtchem.2022.101333
  20. Al-Ghiffari A.D., Ludin N.A., Davies M.L. et al. // Mater. Today Commun. 2022. V. 32. P. 104078. https://doi.org/10.1016/j.mtcomm.2022.104078
  21. Hu T., Zhang R., Li J.-P. et al. // Chip. 2022. V. 1. № 3. P. 100017. https://doi.org/10.1016/j.chip.2022.100017
  22. Ji S., Bae S., Hu L. et al. // Adv. Mater. 2024. V. 36. № 2. https://doi.org/10.1002/adma.202309531
  23. Yin Z., Li H., Li H. et al. // ACS Nano. 2012. V. 6. № 1. P. 74. https://doi.org/10.1021/nn2024557
  24. Li H., Wu J., Yin Z. et al. // Acc. Chem. Res. 2014. V. 47. № 4. P. 1067. https://doi.org/10.1021/ar4002312
  25. Cantarella M., Gorrasi G., Di Mauro A. et al. // Sci. Rep. 2019. V. 9. № 1. P. 974. https://doi.org/10.1038/s41598-018-37798-8
  26. Simonenko T.L., Simonenko N.P., Zemlyanukhin A.A. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 12. P. 1875. https://doi.org/10.1134/S003602362360212X
  27. Li J., Listwan A., Liang J. et al. // Chem. Eng. J. 2021. V. 422. P. 130100. https://doi.org/10.1016/j.cej.2021.130100
  28. Wang T., Guo J., Zhang Y. et al. // Cryst. Growth Des. 2024. V. 24. № 7. P. 2755. https://doi.org/10.1021/acs.cgd.3c01369
  29. Cadot S., Renault O., Fregnaux M. et al. // Nanoscale. 2017. V. 9. № 2. P. 538. https://doi.org/10.1039/C6NR06021H
  30. Park C., Shim G.W., Hong W. et al. // ACS Appl. Nano Mater. 2023. V. 6. № 10. P. 8981. https://doi.org/10.1021/acsanm.3c01622
  31. Simonenko T.L., Bocharova V.A., Simonenko N.P. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 4. P. 459. https://doi.org/10.1134/S003602362004018X
  32. Simonenko T.L., Bocharova V.A., Gorobtsov P.Y. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 9. P. 1292. https://doi.org/10.1134/S0036023620090193
  33. Simonenko T.L., Dudorova D.A., Simonenko N.P. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 12. P. 1865. https://doi.org/10.1134/S0036023623602131
  34. Han J.T., Jang J.I., Kim H. et al. // Sci. Rep. 2014. V. 4. № 1. P. 5133. https://doi.org/10.1038/srep05133
  35. Lukianov M.Y., Rubekina A.A., Bondareva J.V. et al. // Nanomaterials. 2023. V. 13. № 13. P. 1982. https://doi.org/10.3390/nano13131982
  36. Qiu H., Zheng H., Jin Y. et al. // Ionics (Kiel). 2020. V. 26. № 11. P. 5543. https://doi.org/10.1007/s11581-020-03734-y
  37. Yan H., Song P., Zhang S. et al. // RSC Adv. 2015. V. 5. № 89. P. 72728. https://doi.org/10.1039/C5RA13036K
  38. Wang X., Li H., Li H. et al. // Adv. Funct. Mater. 2020. V. 30. № 15. https://doi.org/10.1002/adfm.201910302Reddy
  39. Inta H., Biswas T., Ghosh S. et al. // ChemNanoMat. 2020. V. 6. № 4. P. 685. https://doi.org/10.1002/cnma.202000005
  40. Zhao W., Liu X., Yang X. et al. // Nanomaterials. 2020. V. 10. № 6. P. 1124. https://doi.org/10.3390/nano10061124Feng
  41. J., Fan Y., Zhao H. et al. // Brazilian J. Phys. 2021. V. 51. № 3. P. 493. https://doi.org/10.1007/s13538-021-00863-1Kaur
  42. J., Gravagnuolo A.M., Maddalena P. et al. // RSC Adv. 2017. V. 7. № 36. P. 22400. https://doi.org/10.1039/C7RA01680HPierucci
  43. D., Henck H., Naylor C.H. et al. // Sci. Rep. 2016. V. 6. № 1. P. 26656. https://doi.org/10.1038/srep26656
  44. Yu H., Xu J., Liu Z. et al. // J. Mater. Sci. 2018. V. 53. № 21. P. 15271. https://doi.org/10.1007/s10853-018-2687-4
  45. Shakya J., Kumar S., Kanjilal D. et al. // Sci. Rep. 2017. V. 7. № 1. P. 9576. https://doi.org/10.1038/s41598-017-09916-5
  46. Zhou P., Song X., Yan X. et al. // Nanotechnology. 2016. V. 27. № 34. P. 344002. https://doi.org/10.1088/0957-4484/27/34/344002

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».