HYDROTHERMAL SYNTHESIS OF HIERARCHICALLY ORGANIZED MoS2 AND THE FORMATION OF FILMS BASED ON IT
- Authors: Simonenko T.L1, Simonenko N.P1, Zemlyanukhin A.A2, Gorobtsov P.Y.1, Simonenko E.P1
-
Affiliations:
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- D.I. Mendeleyev University of Chemical Technology of Russia
- Issue: Vol 69, No 12 (2024)
- Pages: 1690-1704
- Section: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://journals.rcsi.science/0044-457X/article/view/289003
- DOI: https://doi.org/10.31857/S0044457X24120035
- EDN: https://elibrary.ru/IXKTME
- ID: 289003
Cite item
Abstract
About the authors
T. L Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: egorova.offver@mail.ru
Moscow, Russia
N. P Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: tol@ccas.ru
Moscow, Russia
A. A Zemlyanukhin
D.I. Mendeleyev University of Chemical Technology of RussiaMoscow, Russia
Ph. Yu Gorobtsov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
E. P Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
References
- Muhammad Saqib Q., Mannan A., Noman M. et al. // Chem. Eng. J. 2024. V. 490. P. 151857. https://doi.org/10.1016/j.cej.2024.151857
- Bu F., Zhou W., Xu Y. et al. // npj Flex. Electron. 2020. V. 4. № 1. P. 31. https://doi.org/10.1038/s41528-020-00093-6
- Simonenko T.L., Simonenko N.P., Gorobtsov P.Y. et al. // Materials (Basel). 2023. V. 16. № 18. P. 6133. https://doi.org/10.3390/ma16186133
- Sun X., Chen K., Liang F. et al. // Front. Chem. 2022. V. 9. https://doi.org/10.3389/fchem.2021.807500
- Xie Y., Zhang H., Hu H. et al. // Chem. A Eur. J. 2024. V. 30. № 21. https://doi.org/10.1002/chem.202304160
- Khan Y., Ostfeld A.E., Lochner C.M. et al. // Adv. Mater. 2016. V. 28. № 22. P. 4373. https://doi.org/10.1002/adma.201504366
- Lu Y., Lou Z., Jiang K. et al. // Mater. Today Nano. 2019. V. 8. P. 100050. https://doi.org/10.1016/j.mtnano.2019.100050
- Jia R., Shen G., Qu F. et al. // Energy Storage Mater. 2020. V. 27. P. 169. https://doi.org/10.1016/j.ensm.2020.01.030
- Hepel M. // Electrochem. Sci. Adv. 2023. V. 3. № 3. https://doi.org/10.1002/elsa.202100222
- Han X., Wu X., Zhao L. et al. // Microsystems Nanoeng. 2024. V. 10. № 1. P. 107. https://doi.org/10.1038/s41378-024-00742-0
- Reenu, Sonia, Phor L. et al. // J. Energy Storage. 2024. V. 84. P. 110698. https://doi.org/10.1016/j.est.2024.110698
- Czagany M., Hompoth S., Keshri A.K. et al. // Materials (Basel). 2024. V. 17. № 3. P. 702. https://doi.org/10.3390/ma17030702
- Das H.T., Dutta S., T. E.B. et al. // Handb. Biodegrad. Mater. Springer International Publishing. Cham, 2023. P. 1569. https://doi.org/10.1007/978-3-031-09710-2_41
- Forouzandeh P., Kumaravel V., Pillai S.C. // Catalysts. 2020. V. 10. № 9. P. 969. https://doi.org/10.3390/catal10090969
- Choi W., Choudhary N., Han G.H. et al. // Mater. Today. 2017. V. 20. № 3. P. 116. https://doi.org/10.1016/j.mattod.2016.10.002
- Tao H., Fan Q., Ma T. et al. // Prog. Mater. Sci. 2020. V. 111. P. 100637. https://doi.org/10.1016/j.pmatsci.2020.100637
- Kumar P., Abuhimd H., Wahyudi W. et al. // ECS J. Solid State Sci. Technol. 2016. V. 5. № 11. P. Q3021. https://doi.org/10.1149/2.0051611jss
- Joseph N., Shafi P.M., Bose A.C. // Energy & Fuels. 2020. V. 34. № 6. P. 6558. https://doi.org/10.1021/acs.energyfuels.0c00430
- Mohan M., Shetti N.P., Aminabhavi T.M. // Mater. Today Chem. 2023. V. 27. P. 101333. https://doi.org/10.1016/j.mtchem.2022.101333
- Al-Ghiffari A.D., Ludin N.A., Davies M.L. et al. // Mater. Today Commun. 2022. V. 32. P. 104078. https://doi.org/10.1016/j.mtcomm.2022.104078
- Hu T., Zhang R., Li J.-P. et al. // Chip. 2022. V. 1. № 3. P. 100017. https://doi.org/10.1016/j.chip.2022.100017
- Ji S., Bae S., Hu L. et al. // Adv. Mater. 2024. V. 36. № 2. https://doi.org/10.1002/adma.202309531
- Yin Z., Li H., Li H. et al. // ACS Nano. 2012. V. 6. № 1. P. 74. https://doi.org/10.1021/nn2024557
- Li H., Wu J., Yin Z. et al. // Acc. Chem. Res. 2014. V. 47. № 4. P. 1067. https://doi.org/10.1021/ar4002312
- Cantarella M., Gorrasi G., Di Mauro A. et al. // Sci. Rep. 2019. V. 9. № 1. P. 974. https://doi.org/10.1038/s41598-018-37798-8
- Simonenko T.L., Simonenko N.P., Zemlyanukhin A.A. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 12. P. 1875. https://doi.org/10.1134/S003602362360212X
- Li J., Listwan A., Liang J. et al. // Chem. Eng. J. 2021. V. 422. P. 130100. https://doi.org/10.1016/j.cej.2021.130100
- Wang T., Guo J., Zhang Y. et al. // Cryst. Growth Des. 2024. V. 24. № 7. P. 2755. https://doi.org/10.1021/acs.cgd.3c01369
- Cadot S., Renault O., Fregnaux M. et al. // Nanoscale. 2017. V. 9. № 2. P. 538. https://doi.org/10.1039/C6NR06021H
- Park C., Shim G.W., Hong W. et al. // ACS Appl. Nano Mater. 2023. V. 6. № 10. P. 8981. https://doi.org/10.1021/acsanm.3c01622
- Simonenko T.L., Bocharova V.A., Simonenko N.P. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 4. P. 459. https://doi.org/10.1134/S003602362004018X
- Simonenko T.L., Bocharova V.A., Gorobtsov P.Y. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 9. P. 1292. https://doi.org/10.1134/S0036023620090193
- Simonenko T.L., Dudorova D.A., Simonenko N.P. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 12. P. 1865. https://doi.org/10.1134/S0036023623602131
- Han J.T., Jang J.I., Kim H. et al. // Sci. Rep. 2014. V. 4. № 1. P. 5133. https://doi.org/10.1038/srep05133
- Lukianov M.Y., Rubekina A.A., Bondareva J.V. et al. // Nanomaterials. 2023. V. 13. № 13. P. 1982. https://doi.org/10.3390/nano13131982
- Qiu H., Zheng H., Jin Y. et al. // Ionics (Kiel). 2020. V. 26. № 11. P. 5543. https://doi.org/10.1007/s11581-020-03734-y
- Yan H., Song P., Zhang S. et al. // RSC Adv. 2015. V. 5. № 89. P. 72728. https://doi.org/10.1039/C5RA13036K
- Wang X., Li H., Li H. et al. // Adv. Funct. Mater. 2020. V. 30. № 15. https://doi.org/10.1002/adfm.201910302Reddy
- Inta H., Biswas T., Ghosh S. et al. // ChemNanoMat. 2020. V. 6. № 4. P. 685. https://doi.org/10.1002/cnma.202000005
- Zhao W., Liu X., Yang X. et al. // Nanomaterials. 2020. V. 10. № 6. P. 1124. https://doi.org/10.3390/nano10061124Feng
- J., Fan Y., Zhao H. et al. // Brazilian J. Phys. 2021. V. 51. № 3. P. 493. https://doi.org/10.1007/s13538-021-00863-1Kaur
- J., Gravagnuolo A.M., Maddalena P. et al. // RSC Adv. 2017. V. 7. № 36. P. 22400. https://doi.org/10.1039/C7RA01680HPierucci
- D., Henck H., Naylor C.H. et al. // Sci. Rep. 2016. V. 6. № 1. P. 26656. https://doi.org/10.1038/srep26656
- Yu H., Xu J., Liu Z. et al. // J. Mater. Sci. 2018. V. 53. № 21. P. 15271. https://doi.org/10.1007/s10853-018-2687-4
- Shakya J., Kumar S., Kanjilal D. et al. // Sci. Rep. 2017. V. 7. № 1. P. 9576. https://doi.org/10.1038/s41598-017-09916-5
- Zhou P., Song X., Yan X. et al. // Nanotechnology. 2016. V. 27. № 34. P. 344002. https://doi.org/10.1088/0957-4484/27/34/344002
Supplementary files
